• Title/Summary/Keyword: 음성 검출기

Search Result 137, Processing Time 0.024 seconds

Lip Detection using Color Distribution and Support Vector Machine for Visual Feature Extraction of Bimodal Speech Recognition System (바이모달 음성인식기의 시각 특징 추출을 위한 색상 분석자 SVM을 이용한 입술 위치 검출)

  • 정지년;양현승
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.4
    • /
    • pp.403-410
    • /
    • 2004
  • Bimodal speech recognition systems have been proposed for enhancing recognition rate of ASR under noisy environments. Visual feature extraction is very important to develop these systems. To extract visual features, it is necessary to detect exact lip position. This paper proposed the method that detects a lip position using color similarity model and SVM. Face/Lip color distribution is teamed and the initial lip position is found by using that. The exact lip position is detected by scanning neighbor area with SVM. By experiments, it is shown that this method detects lip position exactly and fast.

Endpoint Detection of Speech Signal Using Wavelet Transform (웨이브렛 변환을 이용한 음성신호의 끝점검출)

  • 석종원;배건성
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.57-64
    • /
    • 1999
  • In this paper, we investigated the robust endpoint detection algorithm in noisy environment. A new feature parameter based on a discrete wavelet transform is proposed for word boundary detection of isolated utterances. The sum of standard deviation of wavelet coefficients in the third coarse and weighted first detailed scale is defined as a new feature parameter for endpoint detection. We then developed a new and robust endpoint detection algorithm using the feature found in the wavelet domain. For the performance evaluation, we evaluated the detection accuracy and the average recognition error rate due to endpoint detection in an HMM-based recognition system across several signal-to-noise ratios and noise conditions.

  • PDF

Implementation of the Acoustic Echo Canceller for a Voice-controlled PC (음성제어 PC를 위한 음향 반향 제거기의 구현)

  • 한철희;이혁재;윤대희
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.103-106
    • /
    • 1998
  • 본 논문에서는 전이중(full duplex)으로 동작하는 멀티미디어 PC의 음성 명령어 인식기의 성능 향상을 위한 적응 음향 반향 제거기를 구현하였다. 최근 들어 일고 있는 인간과 컴퓨터의 인터페이스를 쉽고 친밀하게 하려는 노력은 음성으로 제어하는 컴퓨터의 탄생을 예고하고 있다. 이러한 시스템을 전이중 모드에서 사용할 경우 음향 반향은 피할 수 없는 현상이다. 본 논문에서는 이러한 음향 반향을 제거하기 위해서 서브밴드 적응 필터 구조를 이용하여 실시간 처리가 가능한 음향 반향 제거기를 설계하였다. 또한, 동시통화시 음성의 왜곡을 줄이는 스위칭 구조를 사용하였다. 동시통화의 검출은 상호상관도를 이용하여 구현하였다. 이렇게 구현된 반향제거기를 음향 입출력 루틴과 음성 인식기와 결합하여 Windows 95상에서 실시간으로 동작하는 음성 명령어 인식 소프트웨어를 완성하였다. 모의 실험 및 실시간 실험을 통하여 반향 제거기의 성능을 검증하였고, 음성인식 실험을 수행하여 반향 제거기가 인식율 향상에 기여함을 확인하였다.

  • PDF

A study on pitch detection for RUI emotion classification based on voice (RUI용 음성신호기반의 감정분류를 위한 피치검출기에 관한 연구)

  • Byun, Sung-Woo;Lee, Seok-Pil
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2015.07a
    • /
    • pp.421-424
    • /
    • 2015
  • 컴퓨터 기술이 발전하고 컴퓨터 사용이 일반화 되면서 휴먼 인터페이스에 대한 많은 연구들이 진행되어 왔다. 휴먼 인터페이스에서 감정을 인식하는 기술은 컴퓨터와 사람간의 상호작용을 위해 중요한 기술이다. 감정을 인식하는 기술에서 분류 정확도를 높이기 위해 특징벡터를 정확하게 추출하는 것이 중요하다. 본 논문에서는 정확한 피치검출을 위하여 음성신호에서 음성 구간과 비 음성구간을 추출하였으며, Speech Processing 분야에서 사용되는 전 처리 기법인 저역 필터와 유성음 추출 기법, 후처리 기법인 Smoothing 기법을 사용하여 피치 검출을 수행하고 비교하였다. 그 결과, 전 처리 기법인 유성음 추출 기법과 후처리 기법인 Smoothing 기법은 피치 검출의 정확도를 높였고, 저역 필터를 사용한 경우는 피치 검출의 정확도가 떨어트렸다.

  • PDF

Robust Speech Endpoint Detection in Noisy Environments for HRI (Human-Robot Interface) (인간로봇 상호작용을 위한 잡음환경에 강인한 음성 끝점 검출 기법)

  • Park, Jin-Soo;Ko, Han-Seok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.2
    • /
    • pp.147-156
    • /
    • 2013
  • In this paper, a new speech endpoint detection method in noisy environments for moving robot platforms is proposed. In the conventional method, the endpoint of speech is obtained by applying an edge detection filter that finds abrupt changes in the feature domain. However, since the feature of the frame energy is unstable in such noisy environments, it is difficult to accurately find the endpoint of speech. Therefore, a novel feature extraction method based on the twice-iterated fast fourier transform (TIFFT) and statistical models of speech is proposed. The proposed feature extraction method was applied to an edge detection filter for effective detection of the endpoint of speech. Representative experiments claim that there was a substantial improvement over the conventional method.

The Environmental Control System using Speech Recognition (음성인식을 이용한 생활환경 제어장치)

  • 정혁준;임재용;이행세;오문식
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.141-144
    • /
    • 2000
  • 일반인들은 음성인식을 이용한 생활보조기구들의 필요성이 적지만 장애인이나 노인들은 가족이나 주변인의 도움을 받지 않고서는 가전제품의 작동이나 전화통화 등과 같은 일을 스스로 하기에는 쉽지 않다. 이러한 사람들에게 각 가정에 널리 보급되어 있는 PC를 이용하여서 타인의 도움을 받지 않고서도 간편하게 사용할 수 있게 음성을 이용한 생활보조기구들 제어에 응용하였다본 음성인식기는 음성의 끝점 검출, 음성의 특징계수 추출, 백터 양자화 학습 및 인식, HMM학습 그리고 HMM인식으로 나누어져 있다. 그리고 그 인식 결과에 따라 생활보조기구등을 제어하였다. 이러한 음성인식기를 만드는 것은 노인이나 장애인들에게 자신이 혼자할수 없는 생활의 편리함을가져다 주기 위함이고 일반정상인에게도 많은 편리함을 가져다 주기 위함이다. 그러나 언어 학습과정에서 노인이나 환자는 학습에 어려움이 있어 적은 학습으로도 인식되어야하는 과제가 남아있다.

  • PDF

Time-Frequency Domain Impulsive Noise Detection System in Speech Signal (음성 신호에서의 시간-주파수 축 충격 잡음 검출 시스템)

  • Choi, Min-Seok;Shin, Ho-Seon;Hwang, Young-Soo;Kang, Hong-Goo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.2
    • /
    • pp.73-79
    • /
    • 2011
  • This paper presents a new impulsive noise detection algorithm in speech signal. The proposed method employs the frequency domain characteristic of the impulsive noise to improve the detection accuracy while avoiding the false-alarm problem by the pitch of the speech signal. Furthermore, we proposed time-frequency domain impulsive noise detector that utilizes both the time and frequency domain parameters which minimizes the false-alarm problem by mutually complementing each other. As the result, the proposed time-frequency domain detector shows the best performance with 99.33 % of detection accuracy and 1.49 % of false-alarm rate.

Robust Speech Segmentation Method in Noise Environment for Speech Recognizer (음성인식기 구현을 위한 잡음에 강인한 음성구간 검출기법)

  • 김창근;박정원;권호민;허강인
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.2
    • /
    • pp.18-24
    • /
    • 2003
  • One of the most important subjects in the implementation of real time speech recognizer is to design both reliable VAD(Voice Activity Detection) and suitable speech feature vector. But, because it is difficult to calculate reliable VAD in the environment having surrounding noise, designed suitable speech feature vector may not be obtained. Solving this problem, in this paper, we implement not only short time power spectrum which is generally used but also two additive parameters, the comparison measure of spectrum density having robust property in noise and linear discriminant function using linear regression, then perform VAD by using the combination of each parameter having apt weight in other magnitudes of surrounding noise and confirm that proposed parameters show a robust characteristic in circumstances having surrounding noise by using DTW(Dynamic Time Waning) in recognition experiment.

  • PDF

Voice Activity Detection in Noisy Environment based on Statistical Nonlinear Dimension Reduction Techniques (통계적 비선형 차원축소기법에 기반한 잡음 환경에서의 음성구간검출)

  • Han Hag-Yong;Lee Kwang-Seok;Go Si-Yong;Hur Kang-In
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.5
    • /
    • pp.986-994
    • /
    • 2005
  • This Paper proposes the likelihood-based nonlinear dimension reduction method of the speech feature parameters in order to construct the voice activity detecter adaptable in noisy environment. The proposed method uses the nonlinear values of the Gaussian probability density function with the new parameters for the speec/nonspeech class. We adapted Likelihood Ratio Test to find speech part and compared its performance with that of Linear Discriminant Analysis technique. In experiments we found that the proposed method has the similar results to that of Gaussian Mixture Models.