한국음향학회 1998년도 제15회 음성통신 및 신호처리 워크샵(KSCSP 98 15권1호)
/
pp.465-469
/
1998
가변 전송율 음성 부호화기를 위한 음성 검출기를 통계적 모델을 적용하여 설계한다. 제안된 음성 검출기는 음성 파라미터를 decision-directed 방식으로 추정함으로써 LRT를 이용하여 동작 특성이 우수한 판정 규칙을 유도한다. 또한 음성 발생 사건들을 1차의 Markov process 로 모델링 함으로써 과거의 관찰들을 현재 프레임의 음성 검출 과정에서 고려할 수 있는 행오버 알고리즘을 개발한다. 개발된 음성 검출기는 고려된 실험환경에서 ITU-T 표준인 G.729 Annex B 음성 검출기보다 맹 우수한 성능을 나타내었다.
본 논문에서는 음성의 통계적 모델에 기반한 음성 검출기 (voice activity detection, VAD)의 성능 향상을 위해 2차 조건 사후 최대 확률 (second-order conditional maximum a posteriori, second-order CMAP)기법을 적용한 우도비 테스트 (likelihood ratio test, LRT)를 제안한다. 제안된 알고리즘은, 기존의 통계적 모델에 기반한 음성 검출기와 CMAP 기반의 음성 검출기를 분석한 다음, 직전 2 프레임에서 음성의 존재와 부재에 대한 조건부 확률에 따라 실시간으로 적응형 문턱값을 구하여 기하 평균한 우도비와 비교하는 음성검출 결정법 (decision rule)을 제시한다. 제안된 알고리즘을 비정상 (non-stationary) 잡음환경에서 기존의 통계적 모델에 기반한 음성 검출기, CMAP 기반의 음성 검출기와 비교하였으며, 향상된 성능을 보였다.
본 논문에서는 간단한 구조, 적은 계산량과 안정된 빠른 수렴속도를 가진 RBF (Radial Basis Function) 신경회로망을 이용한 이중 임계값 방식의 음성구간 검출기 알고리즘을 제안하고 시뮬레이션을 통해 유용성을 확인하였다. 음성압축기에 사용되는 CELP (Code-Excited Linear Prediction) 파라미터들을 신경회로망 입력으로 하여 잡음에 강하게 반응하게 하였고, 음성구간 검출기의 성능향상을 위해 음성구간과 침묵구간에서 다른 임계값을 사용하는 이중 임계값 방식을 적용하였다. 실험 결과 이중 임계값을 이용한 RBF 신경망 음성구간 검출기는 G.729 Annex B 음성구간 검출기 보다 우수한 성능을 보였고, 기존의 MLP (Multi Layer Perceptron) 신경회로망을 이용한 음성구간 검출기와 비교하여 음성구간에서는 비슷한 성능을 보였으나 침묵구간에서 25% 정도의 성능향상을 보였다.
본 논문에서는 기존의 통계적 모델 기반의 음성 검출기의 성능 향상을 위해 이진 분류에 우수한 support vector machine(SVM)을 도입한다. 기존의 통계적 모델 기반 음성 검출기의 경우 음성의 존재와 부재에 대한 가설로부터 각각의 통계적 모델을 세워 입력 데이타에 의해 결정된 각 주파수 채널별 우도비(likelihood ratio)를 단순히 기하 평균을 취하여 문턱값과 비교, 음성 검출 여부를 판단한다. 제안된 음성 검출기는 기존의 기하 평균을 이용한 결정식을 대신하여 분류 오류 확률이 최소화되도록 각 주파수 채널별 우도비를 SVM의 특징 벡터로 적용한다. 제안된 SVM 기반의 통계적 모델 음성 검출기는 기존의 LRT를 이용한 음성 검출기 및 SVM 기반의 음성 검출기들과 비교하여 다양한 잡음 환경에서 우수한 성능을 나타낸다.
본 논문에서는 입력된 신호에 의해 결정되는 각 주파수 밴드별 우도비(likelihood ratio, LR)를 deep belief networks(DBN)의 입력층으로 이용하는 새로운 음성 검출기(voice activity detection, VAD) 알고리즘을 제안한다. 기존의 통계적 모델 기반의 음성 검출기는 음성 구간을 판단하기 위해 우도비를 기하 평균을 이용한 결정식을 사용한다. 제안된 음성 검출기는 이 결정식을 대신해 DBN을 이용하여, 오검출 확률을 최소화 하도록 학습을 한다. 제안된 DBN 기반의 음성 검출 알고리즘은 통계적 모델 기반의 음성 검출기의 성능을 개선한 support vector machine(SVM) 기반의 음성 검출기와 정상 및 비정상 잡음 환경에서 다양한 조건을 부과하여 비교하였다. 제안된 알고리즘이 기존의 SVM 기반의 알고리즘보다 전체 오분류 확률 [0.7, 2.7]의 향상 폭을 보였다.
한국음향학회 1998년도 제15회 음성통신 및 신호처리 워크샵(KSCSP 98 15권1호)
/
pp.375-379
/
1998
음성 언어 자료의 확보 및 활용을 위해서는 다양한 소프트웨어의 도움이 필요하다. 본 논문에서는 본 연구실에서 설계 및 개발한 PC용 Workbench에 대하여 기술한다. Workbench는 음성 언어 자료의 확보를 위한 텍스트 처리 모듈들과 음성 데이터의 처리를 위한 신호처리 모듈들로 구성되어 있다. Workbench에 포함된 모듈로는 텍스트를 자동 읽기 변환하는 철자 음운 변환기, 발성 목록 선정 모듈, 끝점 검출기를 이용한 음성 데이터 편집 모듈, 끝점 검출기를 이용한 음성 데이터 편집 모듈, 다단계 레이블링 시스템, 텍스트에서 원하는 음운 환경을 포함하고 있는 문자열을 다양한 조건으로 검색할 수 있는 음운 환경 검색기를 포함하고 있다.
본 논문에서는 다양한 잡음 환경에서 음성의 통계적 모델에 기반한 음성 검출기의 성능향상을 위해 PSFM (Power Spectral Flatness Measure)을 이용하여 실시간으로 변별적 가중치 학습 (Discriminative Weight Training) 기반의 최적화된 우도비 테스트 (Likelihood Ratio Test, LRT)를 제안한다. 먼저, 기존의 통계모델기반의 음성 검출기를 분석하고, 이를 기반으로 MCE (Minimum Classification Error)방법을 도입하여 도출한 각 주파수 채널별 가중치를 PSFM 값에 기반하여 실시간 매 프레임마다 다른 가중치를 적용한 우도비 기반의 음성 검출 결정법을 제시한다. 제안된 알고리즘은 다양한 잡음 환경에서 기존에 제시된 음성 검출기와 비교하였으며, 우수한 성능을 보인다.
본 논문에서는 조건 사후 최대 확률 (conditional maximum a posteriori, CMAP)과 음성 스펙트럼 변이 조건을 기반으로 한 새로운 음성 검출기 (voice activity detection, VAD)를 제안한다. 제안된 음성 검출기는 통계적 모델을 기반으로 한 우도비 테스트 (likelihood ratio test, LRT)의 문턱값을 결정하는데 조건 사후 최대 확률과 스펙트럼 변이의 상태 값을 조건부 확률로 부과한다. 제안된 알고리즘을 다양한 잡음 환경에서 기존의 CMAP 기반의 음성 검출기와 비교한 결과 전체적으로 향상된 성능을 보였으며 특히 SNR이 낮은 조건에서 향상 폭이 컸다.
음성 검출기 (VAD, Voice Activity Detector)는 이동 통신이나 음성신호처리 등에 매우 중요한 기법으로 사용된다. 일반적인 음성 검출방식은 이산 푸리에 변환 (DFT, Discrete Fourier Transform)영역에서 통계적인 모델을 기반으로 하여 우도비검정 (LRT, Likelihood Ratio Test)을 하게 된다. 그리고 이 값을 임계값과 비교하며 음성인지 아닌지 판단하게 된다. 본 논문에서는 신호 준공간 (Signal Subspace)에 기반한 새로운 통계적 음성 검출 기법을 제안하다. 확률적인 주성분 분석 (PPCA, Probabilistic Principal Component Analysis)은 신호 준공간 방법에서 잡음신호에 대한 확률적인 모델을 얻기 위해 사용된다. 제안된 기법은 신호 준공간 영역에서 우도비검정에 기반을 두는 결정규칙을 적용하였다. 음성 검출 실험 결과는 신호 준공간 모델에 근거한 음성 검출기 기법이 주파수 영역에 기반한 가우시안 (Gaussian) 음성 검출기 보다 향상된 검출 결과를 보여준다.
본 논문에서는 일반화된 정규-라플라스(generalized normal-Laplace) 분포 기반의 음성 검출기(voice activity detection) 알고리즘을 제안한다. 제안된 알고리즘은, 잡음 섞인 음성 신호의 확률밀도함수를 일반화된 정규-라플라스 분포로 표현한 다음, 일반화된 정규-라플라스 분포의 음성과 잡음의 분산을 고차 모멘트(higher order moments)를 이용하여 추정한다. 제안된 알고리즘은 다양한 조건의 잡음 환경에서 기존의 음성 검출기들과 비교하였으며 향상된 성능을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.