• 제목/요약/키워드: 음성 검출기

검색결과 137건 처리시간 0.023초

통계적 모델에 근거한 음성 검출기의 설계 (Design of a Statistical Model Based Voice Activity Detector)

  • 손종서
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1998년도 제15회 음성통신 및 신호처리 워크샵(KSCSP 98 15권1호)
    • /
    • pp.465-469
    • /
    • 1998
  • 가변 전송율 음성 부호화기를 위한 음성 검출기를 통계적 모델을 적용하여 설계한다. 제안된 음성 검출기는 음성 파라미터를 decision-directed 방식으로 추정함으로써 LRT를 이용하여 동작 특성이 우수한 판정 규칙을 유도한다. 또한 음성 발생 사건들을 1차의 Markov process 로 모델링 함으로써 과거의 관찰들을 현재 프레임의 음성 검출 과정에서 고려할 수 있는 행오버 알고리즘을 개발한다. 개발된 음성 검출기는 고려된 실험환경에서 ITU-T 표준인 G.729 Annex B 음성 검출기보다 맹 우수한 성능을 나타내었다.

  • PDF

적응형 문턱값을 가지는 2차 조건 사후 최대 확률을 이용한 통계적 모델 기반의 음성 검출기 (Statistical Model-Based Voice Activity Detection Using the Second-Order Conditional Maximum a Posteriori Criterion with Adapted Threshold)

  • 김상균;장준혁
    • 한국음향학회지
    • /
    • 제29권1호
    • /
    • pp.76-81
    • /
    • 2010
  • 본 논문에서는 음성의 통계적 모델에 기반한 음성 검출기 (voice activity detection, VAD)의 성능 향상을 위해 2차 조건 사후 최대 확률 (second-order conditional maximum a posteriori, second-order CMAP)기법을 적용한 우도비 테스트 (likelihood ratio test, LRT)를 제안한다. 제안된 알고리즘은, 기존의 통계적 모델에 기반한 음성 검출기와 CMAP 기반의 음성 검출기를 분석한 다음, 직전 2 프레임에서 음성의 존재와 부재에 대한 조건부 확률에 따라 실시간으로 적응형 문턱값을 구하여 기하 평균한 우도비와 비교하는 음성검출 결정법 (decision rule)을 제시한다. 제안된 알고리즘을 비정상 (non-stationary) 잡음환경에서 기존의 통계적 모델에 기반한 음성 검출기, CMAP 기반의 음성 검출기와 비교하였으며, 향상된 성능을 보였다.

Radial Basis Function Networks를 이용한 이중 임계값 방식의 음성구간 검출기 (Voice Activity Detection Algorithm base on Radial Basis Function Networks with Dual Threshold)

  • 김홍익;박승권
    • 한국통신학회논문지
    • /
    • 제29권12C호
    • /
    • pp.1660-1668
    • /
    • 2004
  • 본 논문에서는 간단한 구조, 적은 계산량과 안정된 빠른 수렴속도를 가진 RBF (Radial Basis Function) 신경회로망을 이용한 이중 임계값 방식의 음성구간 검출기 알고리즘을 제안하고 시뮬레이션을 통해 유용성을 확인하였다. 음성압축기에 사용되는 CELP (Code-Excited Linear Prediction) 파라미터들을 신경회로망 입력으로 하여 잡음에 강하게 반응하게 하였고, 음성구간 검출기의 성능향상을 위해 음성구간과 침묵구간에서 다른 임계값을 사용하는 이중 임계값 방식을 적용하였다. 실험 결과 이중 임계값을 이용한 RBF 신경망 음성구간 검출기는 G.729 Annex B 음성구간 검출기 보다 우수한 성능을 보였고, 기존의 MLP (Multi Layer Perceptron) 신경회로망을 이용한 음성구간 검출기와 비교하여 음성구간에서는 비슷한 성능을 보였으나 침묵구간에서 25% 정도의 성능향상을 보였다.

우도비 특징 벡터를 이용한 SVM 기반의 음성 검출기 (Voice Activity Detection Based on SVM Classifier Using Likelihood Ratio Feature Vector)

  • 조규행;강상기;장준혁
    • 한국음향학회지
    • /
    • 제26권8호
    • /
    • pp.397-402
    • /
    • 2007
  • 본 논문에서는 기존의 통계적 모델 기반의 음성 검출기의 성능 향상을 위해 이진 분류에 우수한 support vector machine(SVM)을 도입한다. 기존의 통계적 모델 기반 음성 검출기의 경우 음성의 존재와 부재에 대한 가설로부터 각각의 통계적 모델을 세워 입력 데이타에 의해 결정된 각 주파수 채널별 우도비(likelihood ratio)를 단순히 기하 평균을 취하여 문턱값과 비교, 음성 검출 여부를 판단한다. 제안된 음성 검출기는 기존의 기하 평균을 이용한 결정식을 대신하여 분류 오류 확률이 최소화되도록 각 주파수 채널별 우도비를 SVM의 특징 벡터로 적용한다. 제안된 SVM 기반의 통계적 모델 음성 검출기는 기존의 LRT를 이용한 음성 검출기 및 SVM 기반의 음성 검출기들과 비교하여 다양한 잡음 환경에서 우수한 성능을 나타낸다.

우도비를 이용한 DBN 기반의 음성 검출기 (Voice Activity Detection based on DBN using the Likelihood Ratio)

  • 김상균;이상민
    • 재활복지공학회논문지
    • /
    • 제8권3호
    • /
    • pp.145-150
    • /
    • 2014
  • 본 논문에서는 입력된 신호에 의해 결정되는 각 주파수 밴드별 우도비(likelihood ratio, LR)를 deep belief networks(DBN)의 입력층으로 이용하는 새로운 음성 검출기(voice activity detection, VAD) 알고리즘을 제안한다. 기존의 통계적 모델 기반의 음성 검출기는 음성 구간을 판단하기 위해 우도비를 기하 평균을 이용한 결정식을 사용한다. 제안된 음성 검출기는 이 결정식을 대신해 DBN을 이용하여, 오검출 확률을 최소화 하도록 학습을 한다. 제안된 DBN 기반의 음성 검출 알고리즘은 통계적 모델 기반의 음성 검출기의 성능을 개선한 support vector machine(SVM) 기반의 음성 검출기와 정상 및 비정상 잡음 환경에서 다양한 조건을 부과하여 비교하였다. 제안된 알고리즘이 기존의 SVM 기반의 알고리즘보다 전체 오분류 확률 [0.7, 2.7]의 향상 폭을 보였다.

  • PDF

음성 언어 자료 확보를 위한 Workbench의 설계 및 구현 (Design and implementation of workbench for spoken language data acquisition)

  • 김태환
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1998년도 제15회 음성통신 및 신호처리 워크샵(KSCSP 98 15권1호)
    • /
    • pp.375-379
    • /
    • 1998
  • 음성 언어 자료의 확보 및 활용을 위해서는 다양한 소프트웨어의 도움이 필요하다. 본 논문에서는 본 연구실에서 설계 및 개발한 PC용 Workbench에 대하여 기술한다. Workbench는 음성 언어 자료의 확보를 위한 텍스트 처리 모듈들과 음성 데이터의 처리를 위한 신호처리 모듈들로 구성되어 있다. Workbench에 포함된 모듈로는 텍스트를 자동 읽기 변환하는 철자 음운 변환기, 발성 목록 선정 모듈, 끝점 검출기를 이용한 음성 데이터 편집 모듈, 끝점 검출기를 이용한 음성 데이터 편집 모듈, 다단계 레이블링 시스템, 텍스트에서 원하는 음운 환경을 포함하고 있는 문자열을 다양한 조건으로 검색할 수 있는 음운 환경 검색기를 포함하고 있다.

  • PDF

실시간 변별적 가중치 학습에 기반한 음성 검출기 (Voice Activity Detection Based on Real-Time Discriminative Weight Training)

  • 강상익;조규행;장준혁
    • 대한전자공학회논문지SP
    • /
    • 제45권4호
    • /
    • pp.100-106
    • /
    • 2008
  • 본 논문에서는 다양한 잡음 환경에서 음성의 통계적 모델에 기반한 음성 검출기의 성능향상을 위해 PSFM (Power Spectral Flatness Measure)을 이용하여 실시간으로 변별적 가중치 학습 (Discriminative Weight Training) 기반의 최적화된 우도비 테스트 (Likelihood Ratio Test, LRT)를 제안한다. 먼저, 기존의 통계모델기반의 음성 검출기를 분석하고, 이를 기반으로 MCE (Minimum Classification Error)방법을 도입하여 도출한 각 주파수 채널별 가중치를 PSFM 값에 기반하여 실시간 매 프레임마다 다른 가중치를 적용한 우도비 기반의 음성 검출 결정법을 제시한다. 제안된 알고리즘은 다양한 잡음 환경에서 기존에 제시된 음성 검출기와 비교하였으며, 우수한 성능을 보인다.

조건 사후 최대 확률과 음성 스펙트럼 변이 조건을 이용한 통계적 모델 기반의 음성 검출기 (A Statistical Model-Based Voice Activity Detection Employing the Conditional MAP Criterion with Spectral Deviation)

  • 김상균;장준혁
    • 한국음향학회지
    • /
    • 제30권6호
    • /
    • pp.324-329
    • /
    • 2011
  • 본 논문에서는 조건 사후 최대 확률 (conditional maximum a posteriori, CMAP)과 음성 스펙트럼 변이 조건을 기반으로 한 새로운 음성 검출기 (voice activity detection, VAD)를 제안한다. 제안된 음성 검출기는 통계적 모델을 기반으로 한 우도비 테스트 (likelihood ratio test, LRT)의 문턱값을 결정하는데 조건 사후 최대 확률과 스펙트럼 변이의 상태 값을 조건부 확률로 부과한다. 제안된 알고리즘을 다양한 잡음 환경에서 기존의 CMAP 기반의 음성 검출기와 비교한 결과 전체적으로 향상된 성능을 보였으며 특히 SNR이 낮은 조건에서 향상 폭이 컸다.

신호 준공간 모델에 기반한 통계적 음성 검출기 (Statistical Voice Activity Defector Based on Signal Subspace Model)

  • 류광춘;김동국
    • 한국음향학회지
    • /
    • 제27권7호
    • /
    • pp.372-378
    • /
    • 2008
  • 음성 검출기 (VAD, Voice Activity Detector)는 이동 통신이나 음성신호처리 등에 매우 중요한 기법으로 사용된다. 일반적인 음성 검출방식은 이산 푸리에 변환 (DFT, Discrete Fourier Transform)영역에서 통계적인 모델을 기반으로 하여 우도비검정 (LRT, Likelihood Ratio Test)을 하게 된다. 그리고 이 값을 임계값과 비교하며 음성인지 아닌지 판단하게 된다. 본 논문에서는 신호 준공간 (Signal Subspace)에 기반한 새로운 통계적 음성 검출 기법을 제안하다. 확률적인 주성분 분석 (PPCA, Probabilistic Principal Component Analysis)은 신호 준공간 방법에서 잡음신호에 대한 확률적인 모델을 얻기 위해 사용된다. 제안된 기법은 신호 준공간 영역에서 우도비검정에 기반을 두는 결정규칙을 적용하였다. 음성 검출 실험 결과는 신호 준공간 모델에 근거한 음성 검출기 기법이 주파수 영역에 기반한 가우시안 (Gaussian) 음성 검출기 보다 향상된 검출 결과를 보여준다.

일반화된 정규-라플라스 분포를 이용한 음성검출기 (Voice Activity Detection employing the Generalized Normal-Laplace Distribution)

  • 김상균;권장우;이상민
    • 한국멀티미디어학회논문지
    • /
    • 제17권3호
    • /
    • pp.294-299
    • /
    • 2014
  • 본 논문에서는 일반화된 정규-라플라스(generalized normal-Laplace) 분포 기반의 음성 검출기(voice activity detection) 알고리즘을 제안한다. 제안된 알고리즘은, 잡음 섞인 음성 신호의 확률밀도함수를 일반화된 정규-라플라스 분포로 표현한 다음, 일반화된 정규-라플라스 분포의 음성과 잡음의 분산을 고차 모멘트(higher order moments)를 이용하여 추정한다. 제안된 알고리즘은 다양한 조건의 잡음 환경에서 기존의 음성 검출기들과 비교하였으며 향상된 성능을 보였다.