• Title/Summary/Keyword: 음성인식 에이전트

Search Result 17, Processing Time 0.02 seconds

Determinants of Safety and Satisfaction with In-Vehicle Voice Interaction : With a Focus of Agent Persona and UX Components (자동차 음성인식 인터랙션의 안전감과 만족도 인식 영향 요인 : 에이전트 퍼소나와 사용자 경험 속성을 중심으로)

  • Kim, Ji-hyun;Lee, Ka-hyun;Choi, Jun-ho
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.8
    • /
    • pp.573-585
    • /
    • 2018
  • Services for navigation and entertainment through AI-based voice user interface devices are becoming popular in the connected car system. Given the classification of VUI agent developers as IT companies and automakers, this study explores attributes of agent persona and user experience that impact the driver's perceived safety and satisfaction. Participants of a car simulator experiment performed entertainment and navigation tasks, and evaluated the perceived safety and satisfaction. Results of regression analysis showed that credibility of the agent developer, warmth and attractiveness of agent persona, and efficiency and care of the UX dimension showed significant impact on the perceived safety. The determinants of perceived satisfaction were unity of auto-agent makers and gender as predisposing factors, distance in the agent persona, and convenience, efficiency, ease of use, and care in the UX dimension. The contributions of this study lie in the discovery of the factors required for developing conversational VUI into the autonomous driving environment.

Development of Continuous Speech Recognition System for Multimedia Mobile Terminal Applications (휴대 멀티미디어 단말용 음성인식 시스템 개발)

  • 김승희
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06c
    • /
    • pp.59-62
    • /
    • 1998
  • 본 논문에서는 한국전자통신연구원의 Handy Combi 응용 도메인을 대상으로 한 화자독립 연속음성인식 시스템 개발에 관하여 기술한다. 불특정화자가 자연스럽게 발음한 연속음성을 인식하는 기술은 펜인식 등과 더불어 멀티모달 인터페이스의 핵심 요소로서, 이동 환경에서 사용자의 다양한 요구사항을 처리하는 지능형 에이전트에 구현을 위해 필수적으로 개발되어야 하는 기술이다. 본 논문에서는 연속확률분포를 가지는 Hidden Markov Model(HMM) 기반의 연속음성인식 시스템을 구현하였다. 개발된 시스템은 음성특징벡터로 MFCC를 사용하였으며, 음소 모델의 강인한 훈련을 위해 음성학적 지식에 기반을 둔 tree-based clustering 방식을 도입하였다. 인식단계에서는 인식속도를 개선시키기 위해 beam-search 기법을 적용하였다. 인식 실험 결과, 99.7%의 어절 인식률과 98.8%의 문장 인식률을 얻었으며, 최종적인 문장의 이해도는 99% 이상이었다.

  • PDF

Developing a New Algorithm for Conversational Agent to Detect Recognition Error and Neologism Meaning: Utilizing Korean Syllable-based Word Similarity (대화형 에이전트 인식오류 및 신조어 탐지를 위한 알고리즘 개발: 한글 음절 분리 기반의 단어 유사도 활용)

  • Jung-Won Lee;Il Im
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.267-286
    • /
    • 2023
  • The conversational agents such as AI speakers utilize voice conversation for human-computer interaction. Voice recognition errors often occur in conversational situations. Recognition errors in user utterance records can be categorized into two types. The first type is misrecognition errors, where the agent fails to recognize the user's speech entirely. The second type is misinterpretation errors, where the user's speech is recognized and services are provided, but the interpretation differs from the user's intention. Among these, misinterpretation errors require separate error detection as they are recorded as successful service interactions. In this study, various text separation methods were applied to detect misinterpretation. For each of these text separation methods, the similarity of consecutive speech pairs using word embedding and document embedding techniques, which convert words and documents into vectors. This approach goes beyond simple word-based similarity calculation to explore a new method for detecting misinterpretation errors. The research method involved utilizing real user utterance records to train and develop a detection model by applying patterns of misinterpretation error causes. The results revealed that the most significant analysis result was obtained through initial consonant extraction for detecting misinterpretation errors caused by the use of unregistered neologisms. Through comparison with other separation methods, different error types could be observed. This study has two main implications. First, for misinterpretation errors that are difficult to detect due to lack of recognition, the study proposed diverse text separation methods and found a novel method that improved performance remarkably. Second, if this is applied to conversational agents or voice recognition services requiring neologism detection, patterns of errors occurring from the voice recognition stage can be specified. The study proposed and verified that even if not categorized as errors, services can be provided according to user-desired results.

Applying Social Strategies for Breakdown Situations of Conversational Agents: A Case Study using Forewarning and Apology (대화형 에이전트의 오류 상황에서 사회적 전략 적용: 사전 양해와 사과를 이용한 사례 연구)

  • Lee, Yoomi;Park, Sunjeong;Suk, Hyeon-Jeong
    • Science of Emotion and Sensibility
    • /
    • v.21 no.1
    • /
    • pp.59-70
    • /
    • 2018
  • With the breakthrough of speech recognition technology, conversational agents have become pervasive through smartphones and smart speakers. The recognition accuracy of speech recognition technology has developed to the level of human beings, but it still shows limitations on understanding the underlying meaning or intention of words, or understanding long conversation. Accordingly, the users experience various errors when interacting with the conversational agents, which may negatively affect the user experience. In addition, in the case of smart speakers with a voice as the main interface, the lack of feedback on system and transparency was reported as the main issue when the users using. Therefore, there is a strong need for research on how users can better understand the capability of the conversational agents and mitigate negative emotions in error situations. In this study, we applied social strategies, "forewarning" and "apology", to conversational agent and investigated how these strategies affect users' perceptions of the agent in breakdown situations. For the study, we created a series of demo videos of a user interacting with a conversational agent. After watching the demo videos, the participants were asked to evaluate how they liked and trusted the agent through an online survey. A total of 104 respondents were analyzed and found to be contrary to our expectation based on the literature study. The result showed that forewarning gave a negative impression to the user, especially the reliability of the agent. Also, apology in a breakdown situation did not affect the users' perceptions. In the following in-depth interviews, participants explained that they perceived the smart speaker as a machine rather than a human-like object, and for this reason, the social strategies did not work. These results show that the social strategies should be applied according to the perceptions that user has toward agents.

Effects of Anthropomorphic Conversational Interface for Smart Home: An Experimental Study on the Voice and Chatting Interactions (스마트홈 대화형 인터페이스의 의인화 효과 음성-채팅 인터랙션 유형에 따른 실험 연구)

  • Hong, Eunji;Cho, Kwangsu;Choi, Junho
    • Journal of the HCI Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.15-23
    • /
    • 2017
  • Applying the concept and components of human nature to the conversational agent in the smart home context, this study investigated the effects of the level of anthropomorphism and interaction type on the emotional user experiences and future use intention. The results of experiment study showed that the high-low condition of anthropomorphism and the voice-chatting interaction type have impacts on the perceived closeness, likability, and future use intention. That is, people evaluate the conversational agent as more close, likable, and useful when they perceive more human nature components and when in the voice interaction mode. Psychological resistance was lower in the voice than in the chatting mode regardless of the level of anthropomorphism. The results also demonstrated an interaction effect of anthropomorphism and interaction type on the future use intention: the effect of anthropomorphism existed only in the voice interaction mode. It leads to the conclusion that a conversational agent with the voice recognition interface should be designed with the higher level of human nature components for the continuous use.

The Effect of AI Agent's Multi Modal Interaction on the Driver Experience in the Semi-autonomous Driving Context : With a Focus on the Existence of Visual Character (반자율주행 맥락에서 AI 에이전트의 멀티모달 인터랙션이 운전자 경험에 미치는 효과 : 시각적 캐릭터 유무를 중심으로)

  • Suh, Min-soo;Hong, Seung-Hye;Lee, Jeong-Myeong
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.8
    • /
    • pp.92-101
    • /
    • 2018
  • As the interactive AI speaker becomes popular, voice recognition is regarded as an important vehicle-driver interaction method in case of autonomous driving situation. The purpose of this study is to confirm whether multimodal interaction in which feedback is transmitted by auditory and visual mode of AI characters on screen is more effective in user experience optimization than auditory mode only. We performed the interaction tasks for the music selection and adjustment through the AI speaker while driving to the experiment participant and measured the information and system quality, presence, the perceived usefulness and ease of use, and the continuance intention. As a result of analysis, the multimodal effect of visual characters was not shown in most user experience factors, and the effect was not shown in the intention of continuous use. Rather, it was found that auditory single mode was more effective than multimodal in information quality factor. In the semi-autonomous driving stage, which requires driver 's cognitive effort, multimodal interaction is not effective in optimizing user experience as compared to single mode interaction.

VR-simulated Sailor Training Platform for Emergency (긴급상황에 대한 가상현실 선원 훈련 플랫폼)

  • Park, Chur-Woong;Jung, Jinki;Yang, Hyun-Seung
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2015.10a
    • /
    • pp.175-178
    • /
    • 2015
  • This paper presents a VR-simulated sailor training platform for emergency in order to prevent a human error that causes 60~80% of domestic/ abroad marine accidents. Through virtual reality technology, the proposed platform provides an interaction method for proficiency of procedures in emergency, and a crowd control method for controlling crowd agents in a virtual ship environment. The interaction method uses speech recognition and gesture recognition to enhance the immersiveness and efficiency of the training. The crowd control method provides natural simulations of crowd agents by applying a behavior model that reflects the social behavior model of human. To examine the efficiency of the proposed platform, a prototype whose virtual training scenario describes the outbreak of fire in a ship was implemented as a standalone system.

  • PDF

A Study for Education Contents Production using Character Agent (캐릭터 에이전트를 이용한 교육용 컨텐츠 저작에 대한 연구)

  • Park, Sang-Yi;Lee, Hea-Jung;Joung, Suk-Tae
    • Annual Conference of KIPS
    • /
    • 2003.11a
    • /
    • pp.37-40
    • /
    • 2003
  • 본 논문은 LipSynchro 소프트웨어 개발 키트(SDK)를 이용하여 기존 2차원의 정지된 이미지를 모션생성엔진, 음성분석, 인식엔진과 함께 연동함으로서 캐릭터의 움직임을 자동으로 생성하여 사실적이고 살아있는 캐릭터 에이전트를 만들어, 이를 멀티미디어 교육용 컨텐츠저작 툴과 결합하여 보다 나은 교육용 컨텐츠를 생성할 수 있도록 하였다.

  • PDF

Voice Interactions with A. I. Agent : Analysis of Domestic and Overseas IT Companies (A.I.에이전트와의 보이스 인터랙션 : 국내외 IT회사 사례연구)

  • Lee, Seo-Young
    • Journal of Korea Entertainment Industry Association
    • /
    • v.15 no.4
    • /
    • pp.15-29
    • /
    • 2021
  • Many countries and companies are pursuing and developing Artificial intelligence as it is the core technology of the 4th industrial revolution. Global IT companies such as Apple, Microsoft, Amazon, Google and Samsung have all released their own AI assistant hardware products, hoping to increase customer loyalty and capture market share. Competition within the industry for AI agent is intense. AI assistant products that command the biggest market shares and customer loyalty have a higher chance of becoming the industry standard. This study analyzed the current status of major overseas and domestic IT companies in the field of artificial intelligence, and suggested future strategic directions for voice UI technology development and user satisfaction. In terms of B2B technology, it is recommended that IT companies use cloud computing to store big data, innovative artificial intelligence technologies and natural language technologies. Offering voice recognition technologies on the cloud enables smaller companies to take advantage of such technologies at considerably less expense. Companies also consider using GPT-3(Generative Pre-trained Transformer 3) an open source artificial intelligence language processing software that can generate very natural human-like interactions and high levels of user satisfaction. There is a need to increase usefulness and usability to enhance user satisfaction. This study has practical and theoretical implications for industry and academia.

Error Analysis of Recent Conversational Agent-based Commercialization Education Platform (최신 대화형 에이전트 기반 상용화 교육 플랫폼 오류 분석)

  • Lee, Seungjun;Park, Chanjun;Seo, Jaehyung;Lim, Heuiseok
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.3
    • /
    • pp.11-22
    • /
    • 2022
  • Recently, research and development using various Artificial Intelligence (AI) technologies are being conducted in the field of education. Among the AI in Education (AIEd), conversational agents are not limited by time and space, and can learn more effectively by combining them with various AI technologies such as voice recognition and translation. This paper conducted a trend analysis on platforms that have a large number of users and used conversational agents for English learning among commercialized application. Currently commercialized educational platforms using conversational agent through trend analysis has several limitations and problems. To analyze specific problems and limitations, a comparative experiment was conducted with the latest pre-trained large-capacity dialogue model. Sensibleness and Specificity Average (SSA) human evaluation was conducted to evaluate conversational human-likeness. Based on the experiment, this paper propose the need for trained with large-capacity parameters dialogue models, educational data, and information retrieval functions for effective English conversation learning.