• Title/Summary/Keyword: 음성감정인식

Search Result 142, Processing Time 0.026 seconds

A study on the enhancement of emotion recognition through facial expression detection in user's tendency (사용자의 성향 기반의 얼굴 표정을 통한 감정 인식률 향상을 위한 연구)

  • Lee, Jong-Sik;Shin, Dong-Hee
    • Science of Emotion and Sensibility
    • /
    • v.17 no.1
    • /
    • pp.53-62
    • /
    • 2014
  • Despite the huge potential of the practical application of emotion recognition technologies, the enhancement of the technologies still remains a challenge mainly due to the difficulty of recognizing emotion. Although not perfect, human emotions can be recognized through human images and sounds. Emotion recognition technologies have been researched by extensive studies that include image-based recognition studies, sound-based studies, and both image and sound-based studies. Studies on emotion recognition through facial expression detection are especially effective as emotions are primarily expressed in human face. However, differences in user environment and their familiarity with the technologies may cause significant disparities and errors. In order to enhance the accuracy of real-time emotion recognition, it is crucial to note a mechanism of understanding and analyzing users' personality traits that contribute to the improvement of emotion recognition. This study focuses on analyzing users' personality traits and its application in the emotion recognition system to reduce errors in emotion recognition through facial expression detection and improve the accuracy of the results. In particular, the study offers a practical solution to users with subtle facial expressions or low degree of emotion expression by providing an enhanced emotion recognition function.

Development of Speech recognition emotion analysis program using machine learning (기계학습을 활용한 음성인식 감정분석 프로그램 개발)

  • Lee, Sangwoo;Yoon, Yeongjae;Lee, KyungHee;Cho, Jungwon
    • Proceedings of The KACE
    • /
    • 2018.08a
    • /
    • pp.71-73
    • /
    • 2018
  • 사람의 음성이 가진 고유한 특성을 이용하여 그 안에 담긴 감정을 분석하여 파악할 수 있다면 효과적인 의사소통이 가능할 것이다. 본 연구에서는 음성이 가진 피치 값과, 속도의 변화와 같은 요소를 데이터화 하여 그 안에 담긴 감정을 기계학습을 통해 분류 및 예측하는 과정을 거친다. 감정 별 음성 데이터 분석을 위해 다양한 기계학습 알고리즘을 활용하며 선행 연구들보다 높은 정확도로 신뢰할 수 있는 측정 결과를 제공해 줄 수 있을 것이다. 이를 통해 음성만으로 사람의 감정을 파악하여 효과적인 의사소통 및 다양한 분야에 활용될 수 있을 것으로 기대한다.

  • PDF

Data Sampling Strategy for Korean Speech Emotion Classification using wav2vec2.0 (wav2vec2.0을 활용한 한국어 음성 감정 분류를 위한 데이터 샘플링 전략)

  • Mirr-Shin;Youhyun Shin
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.493-494
    • /
    • 2023
  • 음성 기반의 감정 분석은 인간의 감정을 정확하게 파악하는 데 중요한 연구 분야로 자리잡고 있다. 최근에는 wav2vec2.0과 같은 트랜스포머 기반의 모델이 음성 인식 분야에서 뛰어난 성능을 보이며 주목받고 있다. 본 연구에서는 wav2vec2.0 모델을 활용하여 한국어 감성 발화 데이터에 대한 감정 분류를 위한 데이터 샘플링 전략을 제안한다. 실험을 통해 한국어 음성 감성분석을 위해 학습 데이터를 활용할 때 감정별로 샘플링하여 데이터의 개수를 유사하게 하는 것이 성능 향상에 도움이 되며, 긴 음성 데이터부터 이용하는 것이 성능 향상에 도움이 됨을 보인다.

Recognition of Emotional states in speech using combination of Unsupervised Learning with Supervised Learning (비감독 학습과 감독학습의 결합을 통한 음성 감정 인식)

  • Bae, Sang-Ho;Lee, Jang-Hoon;Kim, Hyun-jung;Won, Il-Young
    • Annual Conference of KIPS
    • /
    • 2011.11a
    • /
    • pp.391-394
    • /
    • 2011
  • 사용자의 감정을 자동으로 인식하는 연구는 사용자 중심의 서비스를 제공할 때 중요한 요소이다. 인간은 하나의 감정을 다양하게 분류하여 인식한다. 그러나 기계학습을 통해 감정을 인식하려고 할 때 감정을 단일값으로 취급하는 방법만으로는 좋은 성능을 기대하기 어렵다. 따라서 본 논문에서는 비감독 학습과 감독학습을 결합한 감정인식 모델을 제시하였다. 제안된 모델의 핵심은 비감독 학습을 이용하여 인간처럼 한 개의 감정을 다양한 하부 감정으로 분류하고, 이렇게 분류된 감정을 감독학습을 통해 성능을 향상 시키는 것이다.

Emotion recognition in speech using hidden Markov model (은닉 마르코프 모델을 이용한 음성에서의 감정인식)

  • 김성일;정현열
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.3
    • /
    • pp.21-26
    • /
    • 2002
  • This paper presents the new approach of identifying human emotional states such as anger, happiness, normal, sadness, or surprise. This is accomplished by using discrete duration continuous hidden Markov models(DDCHMM). For this, the emotional feature parameters are first defined from input speech signals. In this study, we used prosodic parameters such as pitch signals, energy, and their each derivative, which were then trained by HMM for recognition. Speaker adapted emotional models based on maximum a posteriori(MAP) estimation were also considered for speaker adaptation. As results, the simulation performance showed that the recognition rates of vocal emotion gradually increased with an increase of adaptation sample number.

  • PDF

A study on pitch detection for RUI emotion classification based on voice (RUI용 음성신호기반의 감정분류를 위한 피치검출기에 관한 연구)

  • Byun, Sung-Woo;Lee, Seok-Pil
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2015.07a
    • /
    • pp.421-424
    • /
    • 2015
  • 컴퓨터 기술이 발전하고 컴퓨터 사용이 일반화 되면서 휴먼 인터페이스에 대한 많은 연구들이 진행되어 왔다. 휴먼 인터페이스에서 감정을 인식하는 기술은 컴퓨터와 사람간의 상호작용을 위해 중요한 기술이다. 감정을 인식하는 기술에서 분류 정확도를 높이기 위해 특징벡터를 정확하게 추출하는 것이 중요하다. 본 논문에서는 정확한 피치검출을 위하여 음성신호에서 음성 구간과 비 음성구간을 추출하였으며, Speech Processing 분야에서 사용되는 전 처리 기법인 저역 필터와 유성음 추출 기법, 후처리 기법인 Smoothing 기법을 사용하여 피치 검출을 수행하고 비교하였다. 그 결과, 전 처리 기법인 유성음 추출 기법과 후처리 기법인 Smoothing 기법은 피치 검출의 정확도를 높였고, 저역 필터를 사용한 경우는 피치 검출의 정확도가 떨어트렸다.

  • PDF

Implementation of the Timbre-based Emotion Recognition Algorithm for a Healthcare Robot Application (헬스케어 로봇으로의 응용을 위한 음색기반의 감정인식 알고리즘 구현)

  • Kong, Jung-Shik;Kwon, Oh-Sang;Lee, Eung-Hyuk
    • Journal of IKEEE
    • /
    • v.13 no.4
    • /
    • pp.43-46
    • /
    • 2009
  • This paper deals with feeling recognition from people's voice to fine feature vectors. Voice signals include the people's own information and but also people's feelings and fatigues. So, many researches are being progressed to fine the feelings from people's voice. In this paper, We analysis Selectable Mode Vocoder(SMV) that is one of the standard 3GPP2 codecs of ETSI. From the analyzed result, we propose voices features for recognizing feelings. And then, feeling recognition algorithm based on gaussian mixture model(GMM) is proposed. It uses feature vectors is suggested. We verify the performance of this algorithm from changing the mixture component.

  • PDF

Short Text Emotion Recognition based on Complex Keywords (복합색인어 기반 단문텍스트 감정 인식 기법)

  • Han, Ki-Hyun;Lee, Sungyoung
    • Annual Conference of KIPS
    • /
    • 2013.11a
    • /
    • pp.520-522
    • /
    • 2013
  • 스마트 폰의 확산으로 대화의 개념이 음성에서 텍스트로 확대 되고 있다. 방대하게 누적되고 있는 메신저의 텍스트 데이터로부터 유용한 정보들을 찾아 사용자에게 추천서비스를 제공할 수 있다. 이를 뒷받침 해주기 위해서는 텍스트 감정 인식이 중요하다. 기존에는 PMI기법과 감정키워드를 이용하여 감정을 분류 하였다. 그러나 특정단어로 감정을 분류하기 때문에 정확도가 낮았다. 본 논문에서는 복합색인어 기반 텍스트 감정 인식 기법을 제안한다. 문장에서 동사와 복합색인어를 추출하여 음운으로 분해한다. 그리고 스트링커널에서 벡터 값을 추출하여 기계학습 알고리즘(SVM)으로 4가지 감정(행복, 슬픔. 화남, 평범)으로 분류하는 방법이다. 동사와 감정에 영향을 주는 색인어를 추출하여 감정을 인식하는 기법으로 실험결과 정확도는 기존에 동사만 사용했을 때 보다 15%향상됨을 보였다.

Design for Mood-Matched Music Based on Deep Learning Emotion Recognition (딥러닝 감정 인식 기반 배경음악 매칭 설계)

  • Chung, Moonsik;Moon, Nammee
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.834-836
    • /
    • 2021
  • 멀티모달 감정인식을 통해 사람의 감정을 정확하게 분류하고, 사람의 감정에 어울리는 음악을 매칭하는 시스템을 설계한다. 멀티모달 감정 인식 방법으로는 IEMOCAP(Interactive Emotional Dyadic Motion Capture) 데이터셋을 활용해 감정을 분류하고, 분류된 감정의 분위기에 맞는 음악을 매칭시키는 시스템을 구축하고자 한다. 유니모달 대비 멀티모달 감정인식의 정확도를 개선한 시스템을 통해 텍스트, 음성, 표정을 포함하고 있는 동영상의 감성 분위기에 적합한 음악 매칭 시스템을 연구한다.

Design of Emotion Recognition Using Speech Signals (음성신호를 이용한 감정인식 모델설계)

  • 김이곤;김서영;하종필
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.265-270
    • /
    • 2001
  • Voice is one of the most efficient communication media and it includes several kinds of factors about speaker, context emotion and so on. Human emotion is expressed in the speech, the gesture, the physiological phenomena(the breath, the beating of the pulse, etc). In this paper, the method to have cognizance of emotion from anyone's voice signals is presented and simulated by using neuro-fuzzy model.

  • PDF