기존의 음성기반 감정인식 기술은 충분한 컴퓨팅 파워를 가진 PC에서 수백개의 특징을 사용하여 감정을 인식하고 있다. 이러한 음성기반 감정인식 기술은 컴퓨팅 파워에 제약이 많은 스마트폰 환경을 고려하지 않은 방법이다. 본 논문에서는 제한된 스마트폰 컴퓨팅 파워를 고려한 음성의 특징 추출 기법과 서버 클라이언트 개념을 도입한 효율적인 음성기반 감정인식 프레임워크를 제안한다.
Traditional speech emotion recognition techniques recognize emotions using a general training model based on the voices of various people. These techniques can not consider personalized speech character exactly. Therefore, the recognized results are very different to each person. This paper proposes an adaptive speech emotion recognition framework made from user's' immediate feedback data using a prompted labeling technique for building a personal adaptive recognition model and applying it to each user in a mobile device environment. The proposed framework can recognize emotions from the building of a personalized recognition model. The proposed framework was evaluated to be better than the traditional research techniques from three comparative experiment. The proposed framework can be applied to healthcare, emotion monitoring and personalized service.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2007.11a
/
pp.431-434
/
2007
본 논문에서는 인간의 감정 변화의 영향을 적게 받는 음성 인식 시스템의 특정 파라메터에 관한 연구를 수행하였다. 이를 위하여 우선 다양한 감정이 포함된 음성 데이터베이스를 사용하여 감정 변화가 음성 인식 시스템의 성능에 미치는 영향과 감정 변화의 영향을 적게 받는 특정 파라메터에 관한 연구를 수행하였다. 본 연구에서는 LPC 켑스트럼 계수, 멜 켑스트럼 계수, 루트 켑스트럼 계수, PLP 계수와 RASTA 처리를 한 멜 켑스트럼 계수와 음성의 에너지를 사용하였다. 또한 음성에 포함된 편의(bias)를 제거하는 방법으로 CMS 와 SBR 방법을 사용하여 그 성능을 비교하였다. HMM 기반의 화자독립 단어 인식기를 사용한 실험 결과에서 RASTA 멜 켑스트럼과 델타 켑스트럼을 사용하고 신호편의 제거 방법으로 CMS를 사용한 경우에 가장 우수한 성능을 나타내었다. 이러한 것은 멜 켑스트럼을 사용한 기준 시스템과 비교하여 59%정도 오차가 감소된 것이다.
Journal of the Korean Institute of Intelligent Systems
/
v.20
no.5
/
pp.683-687
/
2010
This paper studied some methods which use frequency warping method that is the one of the speech transformation method to develope the robust speech recognition system for the emotional variation. For this purpose, the effect of emotional variations on the speech signal were studied using speech database containing various emotions and it is observed that speech spectrum is affected by the emotional variation and this effect is one of the reasons that makes the performance of the speech recognition system worse. In this paper, new training method that uses frequency warping in training process is presented to reduce the effect of emotional variation and the speech recognition system based on vocal tract length normalization method is developed to be compared with proposed system. Experimental results from the isolated word recognition using HMM showed that new training method reduced the error rate of the conventional recognition system using speech signal containing various emotions.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2013.06a
/
pp.56-57
/
2013
본 논문에서는 연극공연을 관람하는 관객의 반응정보를 수집하기 위하여, 청각센서를 통해 관객의 음성을 획득하고 획득된 음성에 대한 감정을 예측하여 관객 반응정보 관리시스템에 전송하는 음성신호 기반 감정인식 시스템을 구현한다. 이를 위해, 관객용 헤드셋 마이크와 다채널 녹음장치를 이용하여 관객음성을 획득하는 인터페이스와 음성신호의 특징벡터를 추출하여 SVM (support vector machine) 분류기에 의해 감정을 예측하는 시스템을 구현하고, 이를 관객 반응정보 수집 시스템에 적용한다. 실험결과, 구현된 시스템은 6가지 감정음성 데이터를 활용한 성능평가에서 62.5%의 인식률을 보였고, 실제 연극공연 환경에서 획득된 관객음성과 감정인식 결과를 관객 반응정보 수집 시스템에 전송함을 확인하였다.
Journal of the Korean Institute of Intelligent Systems
/
v.14
no.2
/
pp.150-155
/
2004
In this paper, an emotion recognition method using speech signal is presented. Six basic human emotions including happiness, sadness, anger, surprise, fear and dislike are investigated. The proposed recognizer have each codebook constructed by using the wavelet transform for the emotional state. Here, we first verify the emotional state at each filterbank and then the final recognition is obtained from a multi-decision method scheme. The database consists of 360 emotional utterances from twenty person who talk a sentence three times for six emotional states. The proposed method showed more 5% improvement of the recognition rate than previous works.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2007.04a
/
pp.333-336
/
2007
본 논문에서는 감정인식 분야에서 가장 많이 사용되어지는 음성신호와 얼굴영상을 가지고 4개의(기쁨, 슬픔, 화남, 놀람) 감정으로 인식하고 각각 얻어진 감정인식 결과를 Multi modal 기법을 이용해서 이들의 감정을 융합한다. 이를 위해 얼굴영상을 이용한 감정인식에서는 주성분 분석(Principal Component Analysis)법을 이용해 특징벡터를 추출하고, 음성신호는 언어적 특성을 배재한 acoustic feature를 사용하였으며 이와 같이 추출된 특징들을 각각 신경망에 적용시켜 감정별로 패턴을 분류하였고, 인식된 결과는 감정표현 시스템에 작용하여 감정을 표현하였다.
The Transactions of the Korea Information Processing Society
/
v.13
no.6
/
pp.284-290
/
2024
Speech emotion recognition (SER) is a technique that is used to analyze the speaker's voice patterns, including vibration, intensity, and tone, to determine their emotional state. There has been an increase in interest in artificial intelligence (AI) techniques, which are now widely used in medicine, education, industry, and the military. Nevertheless, existing researchers have attained impressive results by utilizing acted-out speech from skilled actors in a controlled environment for various scenarios. In particular, there is a mismatch between acted and spontaneous speech since acted speech includes more explicit emotional expressions than spontaneous speech. For this reason, spontaneous speech-emotion recognition remains a challenging task. This paper aims to conduct emotion recognition and improve performance using spontaneous speech data. To this end, we implement deep learning-based speech emotion recognition using the VGG (Visual Geometry Group) after converting 1-dimensional audio signals into a 2-dimensional spectrogram image. The experimental evaluations are performed on the Korean spontaneous emotional speech database from AI-Hub, consisting of 7 emotions, i.e., joy, love, anger, fear, sadness, surprise, and neutral. As a result, we achieved an average accuracy of 83.5% and 73.0% for adults and young people using a time-frequency 2-dimension spectrogram, respectively. In conclusion, our findings demonstrated that the suggested framework outperformed current state-of-the-art techniques for spontaneous speech and showed a promising performance despite the difficulty in quantifying spontaneous speech emotional expression.
본 논문에서는 영상과 음성의 데이터를 이용한 사람의 감정을 인식하는 방법을 제안한다. 제안된 방법은 영상과 음성의 인식률에 기반 한다. 영상이나 음성 중 하나의 출력 데이터만을 이용한 경우에는 잘못된 인식에 따른 결과를 해결하기가 힘들다. 이를 보완하기 위해서 영상과 음성의 출력을 이하여 인식률이 높은 감정 상태에 가중치를 줌으로써 잘못된 인식의 결과를 줄일 수 있는 방법을 제안한다. 이를 위해서는 각각의 감정 상태에 대한 영상과 음성의 인식률이 추출되어져 있어야 하며, 추출된 인식률을 기반으로 가중치를 계산하는 방법을 제시한다.
Recently, communication through online is increasing due to the spread of non-face-to-face services due to COVID-19. In non-face-to-face situations, the other person's opinions and emotions are recognized through modalities such as text, speech, and images. Currently, research on multimodal emotion recognition that combines various modalities is actively underway. Among them, emotion recognition using speech data is attracting attention as a means of understanding emotions through sound and language information, but most of the time, emotions are recognized using a single speech feature value. However, because a variety of emotions exist in a complex manner in a conversation, a method for recognizing multiple emotions is needed. Therefore, in this paper, we propose a multi-emotion regression model that extracts feature vectors after preprocessing speech data to recognize complex, inherent emotions and takes into account the passage of time.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.