This paper presents a study on the performance of the music search based on the automatically recognized music-emotion labels. As in the other media data, such as speech, image, and video, a song can evoke certain emotions to the listeners. When people look for songs to listen, the emotions, evoked by songs, could be important points to consider. However; very little study has been done on the performance of the music-emotion labels to the music search. In this paper, we utilize the three axes of human music perception (valence, activity, tension) and the five basic emotion labels (happiness, sadness, tenderness, anger, fear) in measuring music similarity for music search. Experiments were conducted on both genre and singer datasets. The search accuracy of the proposed emotion-based music search was up to 75 % of that of the conventional feature-based music search. By combining the proposed emotion-based method with the feature-based method, we achieved up to 14 % improvement of search accuracy.
현재 머신러닝과 딥러닝의 기술이 빠른 속도로 발전하면서 수많은 인공지능 음성 비서가 출시되고 있지만, 발화자의 문장 내 존재하는 단어만 분석하여 결과를 반환할 뿐, 비언어적 요소는 인식할 수 없기 때문에 결과의 구조적인 한계가 존재한다. 따라서 본 연구에서는 인간의 의사소통 내 존재하는 비언어적 요소인 말의 빠르기, 성조의 변화 등을 수치 데이터로 변환한 후, "플루칙의 감정 쳇바퀴"를 기초로 지도학습 시키고, 이후 입력되는 음성 데이터를 사전 기계학습 된 데이터를 기초로 kNN 알고리즘을 이용하여 분석한다.
사람의 감정 변화에는 크게 기쁨, 슬픔, 흥분, 보통 4가지 상태로 말할 수 있다. 이 4가지 상태에서 기쁨과 슬픔, 흥분과 기쁨 상태가 음성학적으로 비슷한 형태를 가지고 있다. 흥분과 기쁨의 상태에서 방언의 노말 상태가 표준어의 기쁨, 흥분상태와 비슷한 특징을 가지고 있다. 이와 같은 표준어와 방언 간의 특징 때문에 흥분 상태를 인지하는 경우 방언의 보통상태가 흥분상태로 잘못 인식되는 경우가 발생 한다. 본 논문에서는 이와 같은 문제점이 발생하는 음성학적인 차이를 구분 하고자 한다. 이들을 비교하기 위해 Pitch, Formant와 Formant RMS error 3가지 요소를 통하여 표준어와 방언간의 흥분 상태를 연구 하였다.
Journal of the Korean Institute of Intelligent Systems
/
v.18
no.6
/
pp.754-761
/
2008
As the automobile industry and technologies are developed, driver's tend to more concern about service matters than mechanical matters. For this reason, interests about recognition of human knowledge and emotion to make safe and convenient driving environment for driver are increasing more and more. recognition of human knowledge and emotion are emotion engineering technology which has been studied since the late 1980s to provide people with human-friendly services. Emotion engineering technology analyzes people's emotion through their faces, voices and gestures, so if we use this technology for automobile, we can supply drivels with various kinds of service for each driver's situation and help them drive safely. Furthermore, we can prevent accidents which are caused by careless driving or dozing off while driving by recognizing driver's gestures. the purpose of this paper is to develop a system which can recognize states of driver's emotion and attention for safe driving. First of all, we detect a signals of driver's emotion by using bio-motion signals, sleepiness and attention, and then we build several types of databases. by analyzing this databases, we find some special features about drivers' emotion, sleepiness and attention, and fuse the results through Multi-Modal method so that it is possible to develop the system.
Speech emotion recognition(SER) is one of the interesting topics in the machine learning field. By developing SER, we can get numerous benefits. By using a convolutional neural network and Long Short Term Memory (LSTM ) method as a part of Artificial intelligence, the SER system can be built.
Recently, as the demand for non-face-to-face counseling has rapidly increased, the need for emotion recognition technology that combines various aspects such as text, voice, and facial expressions is being emphasized. In this paper, we address issues such as the dominance of non-Korean data and the imbalance of emotion labels in existing datasets like FER-2013, CK+, and AFEW by using Korean video data. We propose methods to enhance multimodal emotion recognition performance in videos by integrating the strengths of image modality with text modality. A pre-trained model is used to overcome the limitations caused by small training data. A GPT-4-based LLM model is applied to text, and a pre-trained model based on VGG-19 architecture is fine-tuned to facial expression images. The method of extracting representative emotions by combining the emotional results of each aspect extracted using a pre-trained model is as follows. Emotion information extracted from text was combined with facial expression changes in a video. If there was a sentiment mismatch between the text and the image, we applied a threshold that prioritized the text-based sentiment if it was deemed trustworthy. Additionally, as a result of adjusting representative emotions using emotion distribution information for each frame, performance was improved by 19% based on F1-Score compared to the existing method that used average emotion values for each frame.
This study examined that how precisely MFCC, LPC, energy, and pitch related parameters of the speech data, which have been used mainly for voice recognition system could predict the vocal emotion categories as well as dimensions of vocal emotion. 110 college students participated in this experiment. For more realistic emotional response, we used well defined emotion-inducing stimuli. This study analyzed the relationship between the parameters of MFCC, LPC, energy, and pitch of the speech data and four emotional dimensions (valence, arousal, intensity, and potency). Because dimensional approach is more useful for realistic emotion classification. It results in the best vocal cue parameters for predicting each of dimensions by stepwise multiple regression analysis. Emotion categorizing accuracy analyzed by LDA is 62.7%, and four dimension regression models are statistically significant, p<.001. Consequently, this result showed the possibility that the parameters could also be applied to spontaneous vocal emotion recognition.
The Transactions of the Korea Information Processing Society
/
v.13
no.10
/
pp.492-496
/
2024
Cats are known to express their emotions through a variety of vocalizations during interactions. These sounds reflect their emotional states, making the understanding and interpretation of these sounds crucial for more effective communication. Recent advancements in artificial intelligence has introduced research related to emotion recognition, particularly focusing on the analysis of voice data using deep learning models. Building on this background, the study aims to develop a deep learning system that classifies and generates cat sounds based on their emotional content. The classification model is trained to accurately categorize cat vocalizations by emotion. The sound generation model, which uses deep learning based models such as SampleRNN, is designed to produce cat sounds that reflect specific emotional states. The study finally proposes an integrated system that takes recorded cat vocalizations, classify them by emotion, and generate cat sounds based on user requirements.
Jun-Hyuk Kwon;Su-Min Kwon;Chan-Young Ma;In-Gyu Song;Do-Il Choi;Jae-Hun Lee
Annual Conference of KIPS
/
2024.10a
/
pp.1074-1075
/
2024
본 논문은 청각 약자를 위한 청각 보조 애플리케이션 개발에 초점을 맞추고, 딥러닝을 활용한 오디오 분석과 감정 분석 기능을 포함한 시스템 설계를 다룹니다. 본 연구는 청각 약자들이 외출 시 혹은 실내에서 중요한 소리를 인식하고 경고를 받을 수 있도록 지원하는 애플리케이션을 개발하는 데 중점을 둡니다. 청각 보조 기능은 특정 소리를 학습한 모델을 이용해 위험 신호를 제공하며, 감정 분석 음성 번역 기능은 일상대화에서 텍스트와 감정 분석을 제공해 소통을 개선합니다. 이 애플리케이션은 사용자의 편리성을 높이기 위해 온디바이스 기술을 사용하여, 서버 없이도 실시간 분석이 가능하도록 설계되었습니다. 또한, 저비용으로 청각 보조를 가능하게 하여 더 많은 사용자에게 접근성을 제공합니다. 이를 통해 사회적 약자들의 안전을 보호하고, 감정 분석 기능을 통해 원활한 소통을 돕는다는 점에서 큰 기대효과를 보이고 있습니다.
Yun-Ji Jeong;Min-Seong Yu;Joo-Young Oh;Hyeon-Seok Hwang;Won-Whoi Hun
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.24
no.4
/
pp.9-14
/
2024
This study developed a voice recognition chatbot system to address depression and loneliness among the elderly in an aging society. The system utilizes the Whisper model, GPT 2.5, and XTTS2 to provide high-performance voice recognition, natural language processing, and text-to-speech conversion. Users can express their emotions and states and receive appropriate responses, with voice recognition functionality using familiar voices for comfort and reassurance. The UX/UI design considers the cognitive responses, visual impairments, and physical limitations of the smart senior generation, using high contrast colors and readable fonts for enhanced usability. This research is expected to improve the quality of life for the elderly through voice-based interfaces.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.