• 제목/요약/키워드: 음성감정인식

검색결과 142건 처리시간 0.018초

음성 인식 정보를 사용한 감정 인식 (Emotion Recognition using Speech Recognition Information)

  • 김원구
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국지능시스템학회 2008년도 춘계학술대회 학술발표회 논문집
    • /
    • pp.425-428
    • /
    • 2008
  • 본 논문은 음성을 사용한 인간의 감정 인식 시스템의 성능을 향상시키기 위하여 감정 변화에 강인한 음성 인식 시스템과 결합된 감정 인식 시스템에 관하여 연구하였다. 이를 위하여 우선 다양한 감정이 포함된 음성 데이터베이스를 사용하여 감정 변화가 음성 인식 시스템의 성능에 미치는 영향에 관한 연구와 감정 변화의 영향을 적게 받는 음성 인식 시스템을 구현하였다. 감정 인식은 음성 인식의 결과에 따라 입력 문장에 대한 각각의 감정 모델을 비교하여 입력 음성에 대한 최종 감정 인식을 수행한다. 실험 결과에서 강인한 음성 인식 시스템은 음성 파라메터로 RASTA 멜 켑스트럼과 델타 켑스트럼을 사용하고 신호편의 제거 방법으로 CMS를 사용한 HMM 기반의 화자독립 단어 인식기를 사용하였다. 이러한 음성 인식기와 결합된 감정 인식을 수행한 결과 감정 인식기만을 사용한 경우보다 좋은 성능을 나타내었다.

  • PDF

강인한 음성 인식 시스템을 사용한 감정 인식 (Emotion Recognition using Robust Speech Recognition System)

  • 김원구
    • 한국지능시스템학회논문지
    • /
    • 제18권5호
    • /
    • pp.586-591
    • /
    • 2008
  • 본 논문은 음성을 사용한 인간의 감정 인식 시스템의 성능을 향상시키기 위하여 감정 변화에 강인한 음성 인식 시스템과 결합된 감정 인식 시스템에 관하여 연구하였다. 이를 위하여 우선 다양한 감정이 포함된 음성 데이터베이스를 사용하여 감정 변화가 음성 인식 시스템의 성능에 미치는 영향에 관한 연구와 감정 변화의 영향을 적게 받는 음성 인식 시스템을 구현하였다. 감정 인식은 음성 인식의 결과에 따라 입력 문장에 대한 각각의 감정 모델을 비교하여 입력 음성에 대한 최종감정 인식을 수행한다. 실험 결과에서 강인한 음성 인식 시스템은 음성 파라메터로 RASTA 멜 켑스트럼과 델타 켑스트럼을 사용하고 신호편의 제거 방법으로 CMS를 사용한 HMM 기반의 화자독립 단어 인식기를 사용하였다. 이러한 음성 인식기와 결합된 감정 인식을 수행한 결과 감정 인식기만을 사용한 경우보다 좋은 성능을 나타내었다.

음성신호를 이용한 감정인식 (An Emotion Recognition Technique Using Speech Signals)

  • 정병욱;천성표;김연태;김성신
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국지능시스템학회 2007년도 추계학술대회 학술발표 논문집
    • /
    • pp.123-126
    • /
    • 2007
  • 본 논문은 음성신호를 이용한 감정인식에 관한 연구이다. 감정인식에 관한 연구는 휴먼 인터페이스(Human Interface) 기술의 발전에서 인간과 기계의 상호작용을 위한 것이다. 본 연구에서는 음성신호를 이용하여 감정을 분석하고자 한다. 음성신호의 감정인식을 위해서 음성신호의 특정을 추출하여야한다. 본 논문에서는 개인에 따른 음성신호의 감정인식을 하고자하였다. 그래서 화자인식에 많이 사용되는 음성신호 분석기법인 Perceptual Linear Prediction(PLP) 분석을 이용하여 음성신호의 특정을 추출하였다. 본 연구에서는 PLP 분석을 통하여 개인화된 감정 패턴을 생성하여 간단하면서도 실시간으로 음성신호로부터 감정을 평가 할 수 있는 알고리즘을 만들었다.

  • PDF

얼굴표정과 음성을 이용한 감정인식 (An Emotion Recognition Method using Facial Expression and Speech Signal)

  • 고현주;이대종;전명근
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권6호
    • /
    • pp.799-807
    • /
    • 2004
  • 본 논문에서는 사람의 얼굴표정과 음성 속에 담긴 6개의 기본감정(기쁨, 슬픔, 화남, 놀람, 혐오, 공포)에 대한 특징을 추출하고 인식하고자 한다. 이를 위해 얼굴표정을 이용한 감정인식에서는 이산 웨이블렛 기반 다해상도 분석을 이용하여 선형판별분석기법으로 특징을 추출하고 최소 거리 분류 방법을 이용하여 감정을 인식한다. 음성에서의 감정인식은 웨이블렛 필터뱅크를 이용하여 독립적인 감정을 확인한 후 다중의사 결정 기법에 외해 감정인식을 한다. 최종적으로 얼굴 표정에서의 감정인식과 음성에서의 감정인식을 융합하는 단계로 퍼지 소속함수를 이용하며, 각 감정에 대하여 소속도로 표현된 매칭 감은 얼굴에서의 감정과 음성에서의 감정별로 더하고 그중 가장 큰 값을 인식 대상의 감정으로 선정한다.

음성으로부터의 감정 인식을 위한 퍼지모델 제안 (Fuzzy Model for Speech Emotion Recognition)

  • 문병현;장인훈;심귀보
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국지능시스템학회 2008년도 춘계학술대회 학술발표회 논문집
    • /
    • pp.115-118
    • /
    • 2008
  • 본 논문에서는 음성으로부터 감정을 인식하고 감성적인 운율로 음성 출력을 산출해 내는 시스템을 제안 한다. 음성적인 운율로부터 감정을 인식하기 위해서 퍼지룰(rule)을 이용한다. 본 논문에서 감정 인식 시스템은 음성 샘플들로 학습 데이터를 구축하고 이를 기반으로 하여 추출된 20개의 특징 집합으로부터 가장 중요한 특징들을 자동적으로 선택한다. 화남, 놀람, 행복, 슬픔, 보통의 5가지 감정 상태를 구분하기 위하여 접근법에 기반한 퍼지를 이용하였다.

  • PDF

엔터테인먼트 로봇을 위한 음성으로부터 감정 인식 및 표현 모듈 개발 (Development of Emotion Recognition and Expression module with Speech Signal for Entertainment Robot)

  • 문병현;양현창;심귀보
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국지능시스템학회 2007년도 추계학술대회 학술발표 논문집
    • /
    • pp.82-85
    • /
    • 2007
  • 현재 가정을 비롯한 여러 분야에서 서비스 로봇(청소 로봇, 애완용 로봇, 멀티미디어 로봇 둥)의 사용이 증가하고 있는 시장상황을 보이고 있다. 개인용 서비스 로봇은 인간 친화적 특성을 가져야 그 선호도가 높아질 수 있는데 이를 위해서 사용자의 감정 인식 및 표현 기술은 필수적인 요소이다. 사람들의 감정 인식을 위해 많은 연구자들은 음성, 사람의 얼굴 표정, 생체신호, 제스쳐를 통해서 사람들의 감정 인식을 하고 있다. 특히, 음성을 인식하고 적용하는 것에 관한 연구가 활발히 진행되고 있다. 본 논문은 감정 인식 시스템을 두 가지 방법으로 제안하였다. 현재 많이 개발 되어지고 있는 음성인식 모듈을 사용하여 단어별 감정을 분류하여 감정 표현 시스템에 적용하는 것과 마이크로폰을 통해 습득된 음성신호로부터 특정들을 검출하여 Bayesian Learning(BL)을 적용시켜 normal, happy, sad, surprise, anger 등 5가지의 감정 상태로 패턴 분류를 한 후 이것을 동적 감정 표현 알고리즘의 입력값으로 하여 dynamic emotion space에 사람의 감정을 표현할 수 있는 ARM 플랫폼 기반의 음성 인식 및 감정 표현 시스템 제안한 것이다.

  • PDF

음성감정인식 성능 향상을 위한 트랜스포머 기반 전이학습 및 다중작업학습 (Transformer-based transfer learning and multi-task learning for improving the performance of speech emotion recognition)

  • 박순찬;김형순
    • 한국음향학회지
    • /
    • 제40권5호
    • /
    • pp.515-522
    • /
    • 2021
  • 음성감정인식을 위한 훈련 데이터는 감정 레이블링의 어려움으로 인해 충분히 확보하기 어렵다. 본 논문에서는 음성감정인식의 성능 개선을 위해 트랜스포머 기반 모델에 대규모 음성인식용 훈련 데이터를 통한 전이학습을 적용한다. 또한 음성인식과의 다중작업학습을 통해 별도의 디코딩 없이 문맥 정보를 활용하는 방법을 제안한다. IEMOCAP 데이터 셋을 이용한 음성감정인식 실험을 통해, 가중정확도 70.6 % 및 비가중정확도 71.6 %를 달성하여, 제안된 방법이 음성감정인식 성능 향상에 효과가 있음을 보여준다.

주파수 와핑을 이용한 감정에 강인한 음성 인식 학습 방법 (A Training Method for Emotionally Robust Speech Recognition using Frequency Warping)

  • 김원구
    • 한국지능시스템학회논문지
    • /
    • 제20권4호
    • /
    • pp.528-533
    • /
    • 2010
  • 본 논문에서는 인간의 감정 변화의 영향을 적게 받는 음성 인식 시스템의 학습 방법에 관한 연구를 수행하였다. 이를 위하여 우선 다양한 감정이 포함된 음성 데이터베이스를 사용하여 감정 변화가 음성 신호와 음성 인식 시스템의 성능에 미치는 영향에 관한 연구를 수행하였다. 감정이 포함되지 않은 평상의 음성으로 학습된 음성 인식 시스템에 감정이 포함된 인식 데이터가 입력되는 경우 감정에 따른 음성의 차이가 인식 시스템의 성능을 저하시킨다. 본 연구에서는 감정의 변화에 따라 화자의 성도 길이가 변화한다는 것과 이러한 변화는 음성 인식 시스템의 성능을 저하시키는 원인 중의 하나임을 관찰하였다. 본 연구에서는 이러한 음성의 변화를 포함하는 학습 방법을 제안하여 감정 변화에 강인한 음성 인식 시스템을 개발하였다. HMM을 사용한 단독음 인식 실험에서 제안된 학습 방법을 사용하면 감정 데이터의 오차가 기존 방법보다 28.4% 감소되었다.

감성적 인간 로봇 상호작용을 위한 음성감정 인식 (Speech emotion recognition for affective human robot interaction)

  • 장광동;권오욱
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2006년도 학술대회 1부
    • /
    • pp.555-558
    • /
    • 2006
  • 감정을 포함하고 있는 음성은 청자로 하여금 화자의 심리상태를 파악할 수 있게 하는 요소 중에 하나이다. 음성신호에 포함되어 있는 감정을 인식하여 사람과 로봇과의 원활한 감성적 상호작용을 위하여 특징을 추출하고 감정을 분류한 방법을 제시한다. 음성신호로부터 음향정보 및 운율정보인 기본 특징들을 추출하고 이로부터 계산된 통계치를 갖는 특징벡터를 입력으로 support vector machine (SVM) 기반의 패턴분류기를 사용하여 6가지의 감정- 화남(angry), 지루함(bored), 기쁨(happy), 중립(neutral), 슬픔(sad) 그리고 놀람(surprised)으로 분류한다. SVM에 의한 인식실험을 한 경우 51.4%의 인식률을 보였고 사람의 판단에 의한 경우는 60.4%의 인식률을 보였다. 또한 화자가 판단한 감정 데이터베이스의 감정들을 다수의 청자가 판단한 감정 상태로 변경한 입력을 SVM에 의해서 감정을 분류한 결과가 51.2% 정확도로 감정인식하기 위해 사용한 기본 특징들이 유효함을 알 수 있다.

  • PDF

성도 정규화를 이용한 감정 변화에 강인한 음성 인식 (Robust Speech Recognition using Vocal Tract Normalization for Emotional Variation)

  • 김원구;방현진
    • 한국지능시스템학회논문지
    • /
    • 제19권6호
    • /
    • pp.773-778
    • /
    • 2009
  • 본 논문에서는 인간의 감정 변화에 강인한 음성 인식 시스템을 구현하기 위하여 감정 변화의 영향을 최소화 하는 방법에 관한 연구를 수행하였다. 이를 위하여 우선 다양한 감정이 포함된 음성 데이터베이스를 사용하여 감정 변화에 따른 음성 신호의 변화를 관찰하였다. 감정이 포함되지 않은 평상의 음성으로 학습된 음성 인식 시스템에 감정이 포함된 인식 데이터가 입력되는 경우 감정에 따른 음성의 차이가 인식 시스템의 성능을 저하시킨다. 본 연구에서는 감정의 변화에 따라 화자의 성도 길이가 변화한다는 것과 이러한 변화는 음성 인식 시스템의 성능을 저하시키는 원인 중의 하나임을 관찰하였다. 본 연구에서는 이러한 음성의 변화를 감소시키는 방법으로 성도 길이 정규화 방법을 사용한 감정 변화에 강인한 음성 인식 시스템을 개발하였다. HMM을 사용한 단독음 인식 실험에서 제안된 학습 방법을 사용하면 감정 데이터의 오차가 기존방법보다 41.9% 감소되었다.