• Title/Summary/Keyword: 음력

Search Result 152, Processing Time 0.022 seconds

Finite Element Analysis on Polyethylene Gas Pipes under External Loadings (폴리에틸렌 가스배관의 외부 하중에 대한 유한요소 해석)

  • Kil, Seoog-Hee;Park, Kyo-Shik;Kim, Ji-Yoon
    • Journal of Energy Engineering
    • /
    • v.17 no.4
    • /
    • pp.204-211
    • /
    • 2008
  • Polyethylene(PE) pipes have been widely used as they are easy to construct and suitable for economical efficient when they are compared with metal pipelines. This paper studied the effect of various external loadings on stress and deflection of the buried PE pipes using Finite Element Method(FEM). For this purpose, stresses of buried PE pipes were calculated according to the loading condition such as pipe types(pipe diameter $50{\sim}400mm$), burial depths($0.6{\sim}1.2m$) and internal pressures($0.4{\sim}4bar$). As a result, it was founded the effect and relation with each of loading conditions under the buried condition.

S.D.O.F Macro-element for Interaction of Deep Foundation (단자유도 매크로요소를 이용한 깊은기초의 상호작용 모델)

  • Rha, Chang-Soon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.4
    • /
    • pp.347-355
    • /
    • 2008
  • In this paper single degree of freedom macro-element model was presented to investigate the interaction between soil and the deep foundation under the lateral loads. It was made by modelling each component related to the soil-structure interaction and combining them into one piece. It enhanced the conventional method that was not able to break down the interaction components in piece due to the usage of simple spring element for interaction. A proposed macro-element classified the stress components in relation to the interaction into frictional and compressive resistance. Each component was modelled using the classical plasticity theory, and finally combined in parallel. An example study was carried out using the proposed macro-element for deep foundation embedded in three layered cohesive soil. It showed improved results compared to the conventional method by producing additional information of the interaction components as well as the overall behavior of foundation.

OPERATION OF A LUNISOLAR CALENDAR IN KOREA AND ITS CALCULATION METHOD (한국 음력의 운용과 계산법 연구)

  • PARK, HAN-EARL;MIHN, BYEONG-HEE;AHN, YOUNG-SOOK
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.3
    • /
    • pp.407-420
    • /
    • 2017
  • We study the operation of a lunisolar calendar in Korea and its time data calculation method. The dates based on the lunisolar calendar have been conventionally used in Korea after the Gregorian calendar was introduced in 1896. With the Astronomy Act enacted in 2010, the lunisolar calendar is presently being used as an official calendar along with the Gregorian calendar. However, no institutionalized regulations have been provided on the time data calculation method by the lunisolar calendar. The Korea Astronomy and Space Science Institute very recently established the regulations on the lunisolar calendar operation in Korea. We introduce the regulations together with historical substances and analyze the time data calculated according to the regulations for 600 years from 1901 to 2500. From our study, we find that the value of ${\Delta}T$ (i.e., the difference between the terrestrial time and the universal time) is the most critical parameter causing uncertainty on the data. We also find that all new Moon days in the almanacs agree with our calculations since 1912. Meanwhile, we find that new Moon and winter solstice times are found to be very close to midnight in 38 and five cases, respectively. For instance, the new Moon time on January 14, 2097 is 0 h 0 min 8 s. In this case, deciding the first day (i.e., new moon day) in a lunar month is difficult because of the large uncertainty in the value of ${\Delta}T$. Regarding with a lunar leap month, we find that the rules of inserting the leap month do not apply for 17 years. In conclusion, we believe that our findings are helpful in determining calendar days by using the lunisolar calendar.

A Study on Maritime Traffic Characteristics according to Water Time(Multte) (물때에 따른 해상교통특성에 관한 연구)

  • Yoo, Sang-Lok;Jeong, Cho-Young;Jeong, Jae-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.5
    • /
    • pp.501-506
    • /
    • 2015
  • This study seeks to analyze ships traffic characteristics according to water time in order to provide the necessary data for efficient traffic management development. To analyze maritime traffic volume according to water time, 1 year amount of solar calendar data were converted into lunar calendar, and then applied the traditional water time system of West Sea by using AIS(Automatic Identification System) observation data gathered in Mokpo port for a year of 2013. As a result, it was found herein that the number of outbound ships was larger on the $2^{nd}-3^{nd}$ water times than the $7^{th}$ water times by 23-24 %. And the number of inbound ships was higher on the $12^{th}-13^{th}$ water times than the $9^{th}$ water time by 29-33 %. The hourly variation index of inbound and outbound ships according to time, in particular, was found to change in the form of sine function model. This study is expected to serve as a necessary basic material for development of maritime traffic management according to water time.

Numerical Simulation of Tidal Currents of Asan Bay Using Three-Dimensional Flow Modeling System(FEMOS) (3차원 흐름 모델링시스템(FEMOS)을 이용한 아산만 조류모의)

  • 정태성;김성곤;강시환
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.2
    • /
    • pp.151-160
    • /
    • 2002
  • A modeling system for three-dimensional flow (FEMOS) has been developed and applied to simulate the tidal currents of Asan Bay. The system can consider tidal flats changing with time and uses a finite element method that can adapt coastline change effectively. The simulation results for Asan Bay with large tidal flats, shallow water depth and high tidal range showed good agreements with the observed currents of long-term variations at the medium layer and short-term variations of vertical profiles. Based on the simulated tidal currents, the horizontal distributions of bottom shear stress were calculated and showed close relation with the change of bottom topography. The system can be used widely to study coastal circulation in the coastal region with complex geography.

Failure Mechanism and Long-Term Hydrostatic Behavior of Linear Low Density Polyethylene Tubing (선형저밀도 폴리에틸렌 튜빙의 파손 메커니즘과 장기 정수압 거동)

  • Weon, Jong-Il;Chung, Yu-Kyoung;Shin, Sei-Moon;Choi, Kil-Yeong
    • Polymer(Korea)
    • /
    • v.32 no.5
    • /
    • pp.440-445
    • /
    • 2008
  • The failure mechanism and failure morphology of linear low density polyethylene (LLDPE) tubing under hydrostatic pressure were investigated. Microscopic observations using video microscope and scanning electron microscope indicate that the failure mode is a brittle fracture including cracks propagated from inner wall to outer wall. In addition, oxidation induction time and Fourier transform infrared spectroscopy results show the presence of exothermic peak and the increase in carbonyl index on the surface of fractured LLDPE tubing, due to thermal-degradation. An accelerated life test methodology and testing system for LLDPE tubing are developed using the relationship between stresses and life characteristics by means of thermal acceleration. Statistical approaches using the Arrhenius model and Weibull distribution are implemented to estimate the long-term life time of LLDPE tubing under hydrostatic pressure. Consequently, the long-term life time of LLDPE tubing at the operating temperature of $25^{\circ}C$ could be predicted and also be analyzed.

Behavior of Reinforced Earth Retaining Wall for Permitting Reinforcement to Subside with Monitoring (현장계측을 통한 보강재 침하형 보강토 옹벽의 거동특성)

  • Chung, Jin-Hyuck;Oh, Jong-Keun;Lee, Song
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.2
    • /
    • pp.5-15
    • /
    • 2009
  • The conventional reinforced earth retaining wall has the connector system to fix the reinforcement and block. However, this system defect may cause the crack of block and the rupture of reinforcement due to the stress concentration near the face of reinforced earth retaining wall. Hence, the new connector system which was able to allow the settlement of reinforcement was developed in this study and a test was carried out in the study area which is divided into the conventional reinforced earth retaining wall and reinforced Earth Retaining Wall driving the settlement. As the results of field monitoring in situ, the ratio of tensile force calculated at maximum value on contiguous portion of front block showed that the settlement type decreased the stress concentration near the face of front block greater than the conventional type.

The Characteristics of Stress Distribution on Two-arch Tunnel's Pillar due to Surface Loads in the Discontinuous Rock Mass (불연속성 암반에 위치한 2-아치 터널에서 지표면 하중 작용시 필러에 전달되는 응력 특성)

  • Kim, Hong-Moon;Lee, Sang-Duk
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.5
    • /
    • pp.65-73
    • /
    • 2009
  • Large scale model tests and numerical analyses are performed to investigate the stress distribution of pillar due to surface loading nearby two-arch tunnel which is constructed in the regularly jointed rocks. It is observed that the influence of discontinuities on the stress distribution in the discontinuous rock mass and the underground stresses induced by surface loading are greater than those of linear elastic theory. Especially, lines of equal stresses are developed to the direction of inclination according to the inclined grade. In cases of discontinuities imbedded in parallel with or vertical to the ground, the pressure bulbs are formed symmetrically, however, the inclined ones result in stress distribution in parallel with and vertical to the planes of discontinuities. Results indicated that stress distribution is seriously affected by the angle of discontinuity. When stresses propagating to the pillar need to be estimated, relative location of surface loading, grade of discontinuous plane, and location of two-arch tunnel should be carefully considered.

Estimation of Ultimate Lateral Load Capacity Using CPT Results Considering Lateral Soil Pressure Distribution (수평토압분포를 고려한 CPT 기반의 말뚝극한수평지지력 산정)

  • Kim, Min-Kee;Kyung, Doo-Hyun;Hong, Jung-Moo;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.2
    • /
    • pp.37-44
    • /
    • 2009
  • In this study, estimation methodology for the pile of ultimation lateral resistance, pu, and ultimate lateral capacity, Pu, is based on the CPT cone resistance $q_c$. Preexistent methodologies for ultimate lateral resistance and ultimate lateral capacity have been generally represented with relative density, vertical effective stresses, and various $K_0$ values which are important for analyzing sandy soil. These methodologies, however, did not consider the horizontal effective stress and the effects of construction site conditions. Therefore, CPT-based methodology for the estimation of the ultimate lateral pile load capacity Hu was proposed. Calibration chamber test results were analyzed and compared with calculated results. The proposed estimation methodology for the pile of $p_u$ can be effectively utilized as alternative to preexistent methods.

Calibration of Borehole Roughness Measurement System for Large Diameter Drilled Shafts in Water (수중에서 적용가능한 대구경 현장타설말뚝의 굴착공 벽면거칠기 측정장치의 보정에 관한 연구)

  • Park, Bong-Geun;Nam, Moon-S.;Choi, Yong-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.8
    • /
    • pp.5-21
    • /
    • 2009
  • Based on recent studies on rock socketed drilled shafts, it was found that the side resistance of rock socketed drilled shafts is affected by unconfined compressive strength of rock, socket roughness, rock types and joints, and initial normal stress. Especially, the socket roughness is affected by rock types and joints, drilling methods, and diameters. Since existing roughness measurement systems could be conducted only in the air, a new roughness measurement system, which can measure rock socket roughness in the air and also in the water, is needed. However, the development of new roughness measurement system fur civil engineers has been faced with difficulties of electrical applications. In this study, the laboratory verification system far BKS-LRPS (Backyoung-KyungSung Laser Roughness Profiling System) was developed, which can be applied both in the water and air. Based on the laboratory verification, it was found that the improved BKS-LRPS could define effective measurement distances for the conditions reflecting the apparatus and in-situ situations.