• Title/Summary/Keyword: 음극전위

Search Result 124, Processing Time 0.023 seconds

Voltammetric Study on the Underpotential Deposition of Zinc

  • Lee, Joong-Bae;Paul F. Duby
    • Journal of the Korean institute of surface engineering
    • /
    • v.26 no.3
    • /
    • pp.135-142
    • /
    • 1993
  • 탄소강 및 Nickel 음극에서 아연의 전착특성에 대하여 조사하였다. 황산아연 및 염화아연용액속에서 회전전극을 사용하여 실험한 결과 아연의 평형전위 이전에서 전착이 일어나는 소위 Underpotential Deposition 현상이 관찰되었다. 또한 이렇게 전착이 일어난 아연층은 평형상태에서 일정한 두께로 제한되는데 전착전압에 따른 전착층의 전하량을 계산한 결과 다층흡착구조과 유사한 경향을 나타내었다.

  • PDF

Cathodic Protection Characteristics and Effective Length of Protection Current of Concrete Pile using Zn-mesh Sacrificial Anode (아연 메쉬 희생양극을 이용한 콘크리트 파일의 음극방식 특성 및 방식전류 유효거리)

  • Kim, Ki-Joon;Jeong, Jin-A;Lee, Woo-Cheol
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.773-776
    • /
    • 2008
  • The corrosion of steel in concrete is significant in marine environment. Marine bridges are readily deteriorated due to the exposure to marine environment. Salt damage is one of the most detrimental causes to concrete bridges and port structures. Especially, the splash and tidal zones around water line are comparatively important in terms of safety and life-time point of view. During the last several decades, cathodic protection (cp) has been commonly accepted as an effective technique for corrosion control in concrete structures. Zn-mesh sacrificial anode has been recently developed and started to apply to the bridge column cp in marine condition. The detailed parameters regarding Zn-mesh cp technique, however, have not well understood. This study is to investigate how much Zn-mesh cp influences along the concrete column at elevated temperature. About 100cm column specimens with eight of 10cm segment rebars have been used to measure the variation of cp potential with the distance from Zn-mesh anode at both 10$^{\circ}$C and 40$^{\circ}$C in natural seawater. The cp potential change and current diminishment along the column specimens have been discussed for the optimum design of cp by Zn-mesh sacrificial anode

  • PDF

The Effects of Additives on the Electropolishing of Copper Through Via (구리 Through Via 전해연마에 미치는 첨가제의 영향 연구)

  • Lee, Suk-Ei;Lee, Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.1
    • /
    • pp.45-50
    • /
    • 2008
  • The effects of electrolytes and additives on the electropolishing of 50 and $20{\mu}m$ diameter copper via were investigated to flatten 3D SiP through via. The termination time was determined with analysis of applied potential on anode and cathode to avoid excess electropolishing. Acetic acid played a role of accelerator and glycerol played a role of inhibitor in phosphoric acid electrolytes. The overplated copper on the through via was effectively electropolished in the phosphoric electrolytes with acetic acid and glycerol addition. The electropolishing was terminated at the point of abrupt change of applied potential to remove only overplated copper on the through via.

  • PDF

Cathodic Reduction of Dichromate Ion (중크롬산이온의 음극 환원반응)

  • Lee Ju-Seong
    • Journal of the Korean Chemical Society
    • /
    • v.21 no.4
    • /
    • pp.276-283
    • /
    • 1977
  • Reduction of dichromate at a platinum cathode in acid solution was studied by cyclic voltammetry and controlled potential electrolysis. Cathodic polarization curve consisted of three waves in unbuffered solution of potassium dichromate having initial pH ranges 1.5∼4.0, with sodium sulfate as the supporting electrolyte. Relative heights of the first and the second waves were, respectively, a function of chromium (Ⅵ) concentration and activity of hydrogen ion, but that of the third wave was not proportional to both of them. The current of the first two peaks were proportional to the sweep rate of potential (${\nu}$), while that of the last peak vs. ${\nu}^{1/2}$ was linear at the sweep rate of less than 50mV/sec. By the controlled potential electrolysis, the reduction of chromium (Ⅵ) was almost completely suppressed at potentials more negative than the last peak and at initial pH's above ca. 2.3 of unbuffered solution. Therefore, these peaks represented, respectively, $Cr_2O_7^{2-}{\to}Cr^{3+},\;2H^+{\to}H_2$ and the formation of a cathodic film.

  • PDF

Evaluation of Corrosion Fatigue Crack Propagation Characteristics at Equivalent Potential of Zinc Sacrificial Anode (아연(Zn)희생양극 등가전위에서 부식피로균열 진전특성에 관한 연구)

  • Won Beom Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.363-368
    • /
    • 2024
  • Steel structures used in marine environments, such as ships, offshore structures or sub-structures in wind power generation facilities are prone to corrosion. In this study, the corrosion fatigue crack propagation characteristics due to the environmental load are examined by experiment at -1050 mV vs. SCE, which is equivalent to the anti-corrosion potential of zinc anodes that are widely used as sacrificial anodes. In this study, for this purpose, an experimental study is conducted on the effect of cathodic protection on the propagation of fatigue cracks in the seawater environment under the condition of -1050 mV vs. SCE, considering the wave period in synthetic seawater. Cathodic protection prevents corrosion; however, excessive protection generates hydrogen through chemical reactions as well as calcareous deposits. The fatigue crack propagation rate appeared to be faster than the rate in a seawater corrosion environment at the early stages of the experiment. As the crack length and stress intensity factor K increased, the crack propagation rate became slower than the fatigue crack propagation rate in seawater. However, the crack growth rate was faster than that in the atmosphere.

Scale Formation by Electrode Reactions in Capacitive Deionization and its Effects on Desalination Performance (축전식 탈염에서 전극반응에 의한 스케일 생성과 탈염성능에 미치는 영향)

  • Choi, Jae-Hwan;Kang, Hyun-Soo
    • Applied Chemistry for Engineering
    • /
    • v.27 no.1
    • /
    • pp.74-79
    • /
    • 2016
  • The effects of scale formation of hardness material caused by electrode reactions on the desalination performance of the membrane capacitive deionization (MCDI) were investigated. During the repeated adsorption and desorption process for the influent containing $Ca^{2+}$ ion, changes in effluent concentration and cell potential with respect to the number of adsorption were analyzed. It was found that $OH^-$ generation at the cathode was initiated at about 0.8 V or more of cell potential. In addition, the scale of $Ca(OH)_2$ was formed on the surface of cathode carbon electrode by combining adsorbed $Ca^{2+}$ ions and $OH^-$ ions generated from electrode reaction. As the scale was forming, the electrical resistance of carbon electrode was increasing, which resulted in the decrease of the adsorption amount. In the case of the operation at 1.5 V cell potential, the adsorption was reduced to 58% of the initial adsorption amount due to the scale formation.

Analysis of Arsenic(III) by the Cathodic Stripping Voltammetry (음극 벗김 전류법을 이용한 비소(III) 분석에 관한 연구)

  • Yun, Young Ja;Lee, Hyung Sook;Ko, Weon Bae;Kim, Chung Hee
    • Analytical Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.417-423
    • /
    • 1992
  • The effects of metal ions on the arsenic(III) stripping peak were examined by the cathodic stripping voltammetry. The reduction stripping peak potential and current of arsenic(III) value were -0.79V(vs. Ag/AgCl). $0.86{\mu}A$ by using 0.1N-hydrochloric acid solution. When 10 times of Cu(II) was added to the solution, the reduction stripping peak potential of arsenic(III) was the value of -0.84V(vs. Ag/Cl), which showed a good agreement with theoretical value -0.84V(vs. Ag/Cl) by using 0.1N hydrochloric acid solution. Lead(II) and copper(II) increased the stripping peak heigh of arsenic(III), Among them, the copper(II) extremely enhanced it.

  • PDF

Mathematical Modeling on the Corrosion Behavior of the Steel Casing and Pipe in Cathodic Protection System (음극방식 시스템에서의 압입관과 배관의 부식거동에 관한 수학적 모델링)

  • Kim Y.S.;Li S.Y.;Park K.W.;Jeon K.S.;Kho Y.T.
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.1
    • /
    • pp.40-46
    • /
    • 1998
  • Mathematical modeling on the corrosion of the steel casing and main pipe due to the protection current resulting from a cathodic protection system was carried out using boundary element method. The model is consisted of Laplace's equation with non-linear boundary conditions(Tafel equations) and the iterative technique to determine the miexed potential of the steel casing. The model is applied to the normal steel casing section as well as abnormal one with defects such as metal touch and insulation defects. From the modeling procedure, we can calculate the potential distributions and current density distributions of the system. The theoretical results of the qualitatiive corrosion aspect along the steel casing and main pipe agree well with the experimental results within the experimental conditions studied.

  • PDF

Cross-linkable Waterborne Polyurethane based on Castor Oil as an Efficient Binder for Silicon Anodes (실리콘 음극용 효과적인 바인더로서 가교결합이 가능한 캐스터 오일 기반의 수분산 폴리우레탄)

  • Lee, Yong Hun;Kim, Eunji;Lee, Jin Hong
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.607-612
    • /
    • 2021
  • Silicon (Si) is one of the promising active materials to replace the widely used graphite because of its low electrochemical potential and high theoretical capacity. However, Si anodes still face in problems with the huge volume expansion and continuous decomposition of the electrolyte during repeated charge and discharge processes. To address these issues, a cross-linkable waterborne polyurethane (CWPU) based on a bio-oil, castor oil, was prepared and reacted with Tris(2,3-epoxypropyl) isocyanurate (TGIC) linkers, resulting in the formation of a mechanically robust 3D network structure. Si anodes fabricated with the CWPU-TGIC exhibited stable cycling performances and excellent discharge capacities. The results revealed that the CWPU-TGIC binder efficiently accommodates the large volume change for Si anode during charge and discharge cycles. Overall, the eco-friendly binder shows great promise in improving the electrochemical performances of Si anodes.