• Title/Summary/Keyword: 음극아크

Search Result 55, Processing Time 0.023 seconds

A study on life decision factors of TiN films coated by Cathode Arc ion Plating Method (음극 아크 이온플레이팅법으로 코팅된 TiN 박막의 수명결정요인에 관한 연구)

  • 최석우;백영남
    • Journal of Surface Science and Engineering
    • /
    • v.33 no.4
    • /
    • pp.222-228
    • /
    • 2000
  • The life time of cutting tool was studied in the relation with the properties of TiN coating tools. The purpose of this study is to compare the cutting conditions of the TiN coated tools with those of the non-coated tools and to find out the optimal cutting condition of the TiN coated tool. The coated tools were prepared by the sputtering process at $4$\times$10^{-3}$Torr. When the cutting speed is increased 22.2% from 90m/min, the limited life of coating bite was decreased by 60.61%, but non-coating bite was decreased by 64.05%. In the tool lifetime equation of the coated tools "a"(exponent of feed rate) was not much changed in comparison with that of the non-coated tools but "n" (exponent of tool′s life) was increased by 9.3% and "b" (exponent of cutting depth) was increased by 2.4%. It was thought to be that TiN coated tools was used for higher cutting speed than non-coated tools to improve the lifetime of the coated tools.

  • PDF

High temperature oxidation of TiAlCrSiN thin films (TiAlCrSiN 박막의 고온산화)

  • Hwang, Yeon-Sang;Kim, Min-Jeong;Kim, Seul-Gi;Bong, Seong-Jun;Won, Seong-Bin;Lee, Dong-Bok
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.161-161
    • /
    • 2012
  • 결정질 TiCrN과 AlSiN 나노층이 교대로 구성하는 나노 다층 TiAlCrSiN 박막은 음극 아크 플라즈마 증착법에 의해 증착되었다. 나노 다층 TiAlCrSiN 박막의 산화특성들은 $600{\sim}1000^{\circ}C$사이에서 대기 중 최대 70시간동안 연구 되었다. 형성된 산화물들은 주로 $Cr_2O_3$, ${\alpha}-Al_2O_3$, $SiO_2$ 그리고 rutile-$TiO_2$들로 구성되었다. 나노 다층 TiAlCrSiN 박막이 산화하는 동안, 가장 바깥쪽의 $TiO_2$층은 Ti 이온의 외부확산에 의해, 외부 $Al_2O_3$층은 Al이온의 외부확산에 의해 형성되었다. 동시에, 내부($Al_2O_3$, $Cr_2O_3$) 혼합층과 가장 안쪽의 $TiO_2$층은 산소이온의 내부확산에 의해 형성되었다.

  • PDF

The effects of solenoid magnet on plasma extraction in Filtered Vacuum Arc Source (FVAS) (자장여과 아크 소스에서 각 전자석이 플라즈마 인출에 미치는 영향)

  • 김종국;변응선;이구현;조영상
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.4
    • /
    • pp.431-439
    • /
    • 2001
  • In this paper, the a-Diamond films were synthesized using filtered vacuum arc source (FVAS), FVAS was composed of a torus structure with bending angle of 60 degree. The radius of torus was 266 mm, the radius of plasma duct was 80 mm and the total length was 600 mm. The magnet parts were composed of one permanent magnet and five solenoid magnets. The plasma duct was electrically isolated from the ground so that a bias voltage could be applied. The baffles inside plasma duct were installed in order to prevent the recoil effect of macro-particles. Cathode was made of graphite with 80 mm in diameter. The effects of solenoid magnet on plasma extraction were investigated by computer simulation and experiment using Taguchi's methode. The source and extraction magnet affected the arc stabilization. The extraction beam current was maximized with low value of the source magnet current and high value of the filtering magnet current. The beam current density was 3.2 mA/$\textrm{cm}^2$ and average deposition rate was 5 $\AA$/sec when the currents of arc discharge, source, extraction, bending, deflection and outlet magnet were 30 A, 1 A, 3 A, 5 A, 5 A, and 5 A, respectively. The beam current density and the efficiency of beam transportation were increased with the positive bias voltage of the plasma duct.

  • PDF

Electrochemical Characteristics in Sea Water of Al-3%Mg Arc Spray Coating Layer for Corrosion Protection with Sealing Treatment (후처리 적용에 따른 방식용 Al-3%Mg 용사코팅 층의 해수 내 전기화학적 특성)

  • Park, Il-Cho;Kim, Seong-Jong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.5
    • /
    • pp.974-980
    • /
    • 2015
  • Arc thermal spray coating using Al-3%Mg thermal spray wire was carried out to prevent steel from corrosion damage under the marine environment. Post-sealing was applied to Al-3%Mg spray coating treatment using organic/inorganic composite ceramics in order to improve the corrosion resistance of the as-sprayed coating. The results of various electrochemical experiments with sealing treatment indicated that the improvement in corrosion resistance was observed due to low current density in all applied potential range during anodic and cathodic polarization experiments. Futhermore, the natural potential measurement exhibited severe potential fluctuation due to influence of micro-crack presence on the surface of sealed thermal spray coating layer. In addition, the sealed layer was easily eliminated during anodic polarization. Nevertheless, Al-3%Mg spray coating layer improved corrosion resistance by sealing treatment because the sealed coating efficiency was determined to be 92.11%, indicating the exterior environment barrier effect which is based on the Tafel analysis.

Properties of AlTiN Films Deposited by Cathodic Arc Deposition (음극 아크 증착으로 제조된 AlTiN 박막의 특성)

  • Yang, Ji-Hoon;Kim, Sung-Hwan;Song, Min-A;Jung, Jae-Hun;Jeong, Jae-In
    • Journal of Surface Science and Engineering
    • /
    • v.49 no.3
    • /
    • pp.307-315
    • /
    • 2016
  • The properties of AlTiN films by a cathodic arc deposition process have been studied. Oblique angle deposition has been applied to deposit AlTiN films. AlTiN films have been deposited on stainless steel (SUS304) and cemented carbide (WC) at a substrate temperature of $500^{\circ}C$. AlTiN films were analyzed by scanning electron microscopy, glow-discharge light spectroscopy, micro-vickers hardness, and nanoindenter. When applying a current of 50 A to the cathodic arc source, it showed that the density of macroparticle of AlTiN films was 5 lower than other deposition conditions. With the increase of the bias voltage applied to the substrate up to -150 V, the density of macroparticle was decreased. The change of the $N_2$ flow rate during coating process made no influence on the film properties. For the multi-layered films, the film prepared at oblique angle of $60^{\circ}$ showed the highest hardness of 28 GPa and $H^3/E^2$ index of 0.18. AlTiN films have been shown a good oxidation resistance up to $800^{\circ}C$.