• Title/Summary/Keyword: 은 나노섬유

Search Result 42, Processing Time 0.018 seconds

Development of antimicrobial edible films and coatings: a review (항균 가식성 필름/코팅 개발 현황)

  • Kim, Su Yeon;Min, Sea C.
    • Food Science and Industry
    • /
    • v.50 no.2
    • /
    • pp.37-51
    • /
    • 2017
  • Food packaging strategies have steadily improved with increasing demand for improved food safety, convenience, and shelf life. The development of edible film has been hailed as a technology substituting packaging using synthetic plastics. There has been a surge for research to develop antimicrobial edible films and coatings that can increase microbiological safety while preserving foods. This review addresses recent results that are useful in advancing and extending research into antimicrobial edible films. In this review, we suggest the trend of the development of antimicrobial edible film/coatings by outlining edible film materials, antimicrobial substances, antimicrobial and physical properties of the films, commercial antimicrobial edible films, and methods to statistically predict the efficacy of antimicrobial edible film/coatings, reported in recent studies.

Characteristics of Cellulose Aerogel Prepared by Using Aqueous Sodium Hydroxide-urea (Sodium Hydroxide-urea 수용액을 이용하여 제조한 셀룰로오스계 에어로겔의 특성)

  • Kim, Eun-Ji;Kwon, Gu-Joong;Kim, Dae-Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.4
    • /
    • pp.302-309
    • /
    • 2013
  • The highly porous cellulosic aerogels were prepared by freeze-drying method using sodium hydroxide-urea aqueous solution in the process of dissolution, gelation, regeneration and organic solvent substitution. The structural characteristics of porous aerogel were analyzed using scanning electron microscopy and nitrogen adsorption apparatus. As a result, the dissolving pulp was completely dissolved, but filter papers and holocellulose were divided into two layers (dissolved and undissolved parts) in the process of centrifugation. The structure of aerogel from dissolved pulp showed porous pores in the surface and net-shaped network in the inner part. Aerogels from filter paper and holocellulose had the condensed porous network surface and the open-pore nano-fibril network inner structure. Undissolved form of fibers was observed in the aqueous solution of aerogel from holocellulose. The BET value ($S_{BET}$) of aerogel from dissolved pulp was ranged in 260~326 $m^2/g$, and it was decreased with the increase of concentration. Whereas, the $S_{BET}$ value of aerogel from filter paper (198~418 $m^2/g$) was increased with the increase of concentration. The $S_{BET}$ value of aerogel from holocellulose were 137 $m^2/g$ at 2% (w/w) of cellulose, and it was increased to maximum 401 $m^2/g$ at 4% (w/w) of cellulose. Then, it was decreased at 5% (w/w) of cellulose.