은 나노선은 투명 금속전극으로 저온 공정이 가능하고, 플랙서블 기판에 사용 가능하여 다양한 분야의 응용 소재 연구가 진행 중에 있다. 본 연구에서는 전면 전극으로 은 나노선을 스프레이 코팅하고, 알루미늄 도핑된 산화아연(AZO)을 sputter로 증착하였다. 광 경로를 길게 하기 위해 AZO 기판을 수열합성법을 통해 산화아연 나노선을 성장하였다. 은 나노선 전극 기판과 산화아연 나노선이 성장된 기판의 광 투과도를 분석하기 위해 UV-visible을 이용하였으며, FE-SEM, AFM을 이용하여 각 기판의 형상을 분석하였다. 은 나노선은 500 nm 파장영역에서 투과도 86.93%, 면저항 16 ${\Omega}/{\square}$보였다. ITO 기판보다 400~600 nm 영역에서 헤이즈가 증가되는 것을 확인 할 수 있었다. 산화아연 나노선이 성장된 기판을 이용하여 P3HT:PCBM 블랜딩된 유기 태양전지를 제작하여 전기적 특성 및 효율을 평가하였다.
은 나노선은 높은 전자이동도, 유연성이 우수하며 전극으로 사용하였을 때 전자의 수집 및 전달에 용이하여, 태양전지, 디스플레이 소자 등에 적용하기 위해 연구되고 있다. 본 연구에서는 에탄올에 20% 희석된 은 나노선 농도를 조절하고 이를 스핀코팅하여 투명전극을 제작하였다. 제작된 투명전극의 투과율과 면 저항의 최적화를 통해 P3HT : PCBM의 흡수층을 이용한 유기태양전지를 제작하여 태양전지의 특성을 분석하였다.
그래핀(graphene)은 탄소나노튜브(CNTs)에 비해 가격 경쟁력이 있고 우수한 광투과성과 전기 및 열 전도성을 갖고 있어 반도체 소재, 방열 소재, 접점 소재 등에 적용 가능성이 높은 재료로 주목받고 있다. 특히 모바일 디바이스의 소형화, 고집적화 등의 이슈로 인해 그래핀 소재의 방열 소재 적용을 위해 다양한 연구가 진행되고 있다. 한편 산화 구리 나노선(CuO Nanowire)은 전기 및 열전도도가 우수하고 1차원 나노 구조는 부피대비 큰 표면적, 종횡비가 커서 뛰어난 열전도 구조로서 방열 소재로 응용되기 좋은 조건을 갖고 있다. 본 연구에서는 2차원 구조의 그래핀 나노플레이트(Graphene Nanoplatelet)와 1차원 구조의 CuO NW를 하이브리드화를 통해 열전도도 향상를 개선시키고자 하였다. 소재 합성은 GNP에 Cu 무전해 도금을 진행한 후 열산화 방식을 적용하여 CuO NW를 직접 성장시키는 방식으로 진행하였다. 합성된 GNP-CuONWs 다차원 나노구조체의 열전도도 측정은 에폭시에 분산시켜 레이져 플레쉬법을 이용하였다. 미세 구조 관찰 결과, CuO NW 성장 거동은 열처리 온도 및 시간 그리고 O2 가스의 순환 환경이 주요인자로 작용하는 것을 확인하였다. 열전도도 향상은 다차원 구조의 특성으로 인해 면접촉과 선접촉이 동시에 이루어졌기 때문인 것으로 분석되었으며, 이러한 CuO NWs morphology와 열전도도 향상과의 상관 관계에 대해 논의할 것이다.
3D 배열구조의 Vertical nanowire Integrated Nanogenerator (VING)은 낮은 출력, 유연 기판 상에 부적합, 나노선의 부서지기 쉬움, 장기 안정성, 균일한 나노선의 성장을 필요로 하는 문제점을 가지고 있다. 본 연구에서는 이러한 VING방식의 단점을 보완하여 2D 배열 구조의 Lateral nanowire Integrated Nanogenerator (LING)로 고출력 전압, 유연기판의 상에 적합 등을 개선하는 방향으로 연구를 하였다. 본 연구의 실험 방법으로는 RF magnetron sputter를 이용하여 AZO Seedlayer를 제작하였으며 제작된 AZO Seedlayer를 photolithography 공정으로 제작하였다. 패터닝된 샘플을 Hydro thermal synthesis method로 성장시켰다. 구조적 분석으로는 XRD, FE-SEM 등을 이용하여 측정하였다.
최근 주목 받고 있는 산화아연(ZnO)은 레이저 다이오드, 가스 센서, 자외선 센서, 투명전극 등으로 다양하게 사용될 수 있어 연구개발이 폭 넓게 이루어지고 있는 상황이다. 특히, 3.3 eV의 direct bandgap 에너지를 가지고 있는 ZnO은 현재 자외선센서로 많이 적용되고 있는 물질인 GaN계열을 대체할 수 있는 유망한 물질로 주목 받고 있다. 공기중의 산소나 수분의 표면반응에 의한 자외선 측정을 하는 ZnO을 나노선으로 만들게 되면, 표면대비 부피비가 박막에 비해 급격히 증가하기 때문에 민감도가 커지고 반응시간이 짧아지게 된다. 본 연구에서는 자외선센서의 민감도와 반응성을 향상시키기 위해 전기화학적 합성법을 통해 ZnO의 박막과 나노선을 제조하였다. 사진공정을 통해 3 ${\mu}m$의 간격을 가진 금(Au) 전극을 만든 후, 전기화학적 합성법을 통해 아연이온이 포함된 용액에서 정전류를 흘려보내 아연 또는 ZnO을 증착시킬 수 있었다. 첫 번째로 ZnO을 양쪽 Au 전극에서 동시에 증착하여 두 박막이 접합하였고, 두 번째는 100nm의 지름을 가진 Ni 나노선를 전극 양쪽에서 자석을 통해 자기장을 형성해 정렬시키고 ZnO을 Au 전극과 Ni 나노선에 증착한 후, Ni 나노선를 산화시킴으로써, ZnO 나노구조를 형성하였다. 세 번째로는 Au 전극 양쪽에 아연을 전기화학적 합성을 하여 박막으로 증착하고 고온에서 산화과정을 통해 100 nm 이하의 지름을 가진 ZnO 나노선를 형성하였다. 이렇게 만들어진 세가지 구조의 ZnO의 나노구조와 결정성은 주사전자현미경과 X선 회절 분석기를 통해 측정하였으며, 자외선에 대한 민감도와 반응성은 365 nm의 파장을 가진 자외선발생기와 소스미터장치를 통해 측정하였다. 박막에서 100 nm 이하의 지름을 가진 ZnO 나노선로 갈 수록 자외선에 대한 민감도와 반응성이 향상되었다.
산화아연 나노구조를 금을 금속촉매로 사용하여 실리콘 기판위에 기상이동법으로 성장하였다. 성장할 때 소스(source)와 기판 사이의 거리는 5에서 50 mm로 변화를 주며 아르곤과 산소 분위기에서 $900^{\circ}C$로 성장하였다. 산화아연 나노구조의 구조적 및 광학적 특성을 조사하기 위해 field-emission scanning electron microscopy, X-ray diffraction (XRD), 그리고 photoluminescence (PL)를 이용하였다. 산화아연 나노구조는 나노선과 나노입자의 형태로 성장하였다. 산화아연 나노구조의 광학적 특성은 소스와 기판사이의 거리가 가까울수록 향상되었다. 특히, 소스와 기판사이의 거리가 5 mm 일 때, 산화아연 나노선이 관찰되었으며 XRD 와 PL 분석에서 나타난 반가폭 (full width at half maximum)은 $0.061^{\circ}$ 와 96 meV로써 가장 작았다. 산화아연 나노선은 산화아연 나노입자와 비교하여, 결정성 및 광학적 특성이 우수하였다.
Ag/polystyrene(PS) 나노복합체를 110 $^{\circ}C$의 가열법에 의하여 silver 2-ethylhexylcarbamate(Ag-CB) 복합체의 환원과 동시에 라디칼 중합을 진행하여 제조하였다. 또한, 이러한 전통적인 가열법과는 대조적으로 마이크로파를 조사하여 스티렌 단량체의 중합이 진행됨이 없이 은 나노입자가 잘 분산된 콜로이드 스티렌 용액을 제조할 수 있었다. 이렇게 단지 마이크로파를 조사하여 은 나노입자를 제조하는 방법은 반응기 내의 전체 용액 속에서 균일하고 빠르게 진행되어 매우 입자가 작고 균일한 은 나노콜로이드 용액을 제조할 수 있었다. 또한, 연속적으로 얻어진 은 나노입자를 포함하는 단량체 용액을 라디칼 중합시킴으로써 PS 고분자 매트릭스에 은 나노입자가 잘 분산된 Ag/PS 나노복합체를 얻을 수 있었다. Ag/PS(0.1/100) 나노복합체는 Ag/PS(4.0/100)를 마스터배치로 사용하여 용융-혼합 방법에 의하여 성공적으로 제조할 수 있었으며 그러한 나노복합체를 UV-VIS spectroscopy, TEM, 그리고 XRD를 이용하여 확인하였다.
나노금속분말은 기존의 마이크론 입자와 다른 특이한 기계적, 전기적, 자기적 특성을 나타낸다. 나노금속분말 제조에서 가장 중요한 것은 오염되지 않은 고순도의 분말을 균일하고, 고분산된 입자를 제조하는 것으로 전기선폭발법(Electric Explosion of Wire, EEW)은 이러한 요구조건을 만족시킨다. 최근에는 전기선폭발법을 유체 내에 적용하여 분말을 제조하는 공정이 개발되었다. 이로 인해 고순도의 구형의 금속 나노입자를 얻을 수 있다. 본 연구에서는 물, 알코올, 에틸렌글라이콜 등 다양한 유체내에서 다양한 순금속 분말과 TiNi, SUS 등 나노합금분말을 제조하였다. 제조된 금속입자의 특성과 금속입자가 분산된 유체의 특성은 FE-SEM, HR-TEM, XRD, Turbiscan등으로 분석하였다.
본 연구에서는 질산은 용액을 감마선 조사에 의하여 은나노 입자를 제조한 후, 이것을 활성탄과 혼합하여 은/활성탄 복합체를 제조하여 대장균에 대한 항균특성을 조사하였다. 제조된 은/활성탄 복합체의 특성은 주사전자현미경, X-선 회절법 그리고 원자흡수분광법에 의해 알아보았다. 은/활성탄 복합체의 대장균에 대한 억제농도는 0.387 ppm으로 나타났으며 대장균에 대한 사멸농도는 1.017 ppm이었다. 이 결과로 은/활성탄 복합체의 대장균에 대한 우수한 항균효과를 확인할 수 있었다.
전기설()폭발(Electric Wire Explosion)법은 고밀도 전류를 금속와이어에 인가시키면 저항 발열에 의해서 금속와이어가 빠르게 가열되고, 수$\mu$sec 이내에 초기체적에 비해 2~3배나 팽창한 후 폭발하는 현상을 이용하여 나노분말을 제조하는 방법으로써, 다른 제조방법에 비해 값싼 비용으로 1~50$\mu$sec의 짧은 시간동안 극히 높은 온도($10^4~10^6K$)에 도달하기 때문에, 와이어 전체가 동시에 기화하여 원재료의 조성을 갖는 분말의 합성이 가능하며, 공급되는 에너지와 시간, 챔버의 용적과 압력을 제어함으로써 평균 분말 크기를 조절할 수 있다는 잇점이 있다. 또한, 금속 와이어 주위의 분위기를 조절함으로써 금속나노분말뿐만 아리나 산화물$\cdot$질화물$\cdot$탄화물 분말, 합금 분말, 화학적 화합물이나 복합재료 나노분말들을 만들 수 있어서 여러 산업분야에 대한 응용이 크게 기대되고 있다. 본 연구에서는 전기선()폭발 챔버(Fig. 1) 와 최대 20kV까지 제어 가능한 고출력 펄스 전원장치를 자체 제작하고, 이를 이용하여 은(Ag)나노분말 합성에 대한 실험을 행하였다. 이렇게 제조된 분말은 SEM, XRD, PSA, BET 등을 이용하여 비교분석 하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.