• 제목/요약/키워드: 은닉 노드

검색결과 150건 처리시간 0.022초

확률신경망을 이용한 철도 판형교의 손상평가 (Damage Assessment of Plate Gider Railway Bridge Based on the Probabilistic Neural Network)

  • 조효남;이성칠;강경구;오달수
    • 한국전산구조공학회논문집
    • /
    • 제16권3호
    • /
    • pp.229-236
    • /
    • 2003
  • 손상평가를 위해 많은 연구자들에 의해 인공신경망이 이용되어 왔다. 그러나, 인공신경망을 이용한 손상평가에 있어 정확성과 능률성을 제고하기 위해서는 몇가지 문제점이 있다. 기존의 인공신경망 특히 역전파신경망(BPNN)의 경우 신경망 학습을 위해 많은 수의 학습패턴을 필요로 하며, 또한 신경망의 구조와 해의 수렴간에 어떤 확정적인 관계가 존재하지 않는다. 따라서 신경망의 은닉층의 수와 한 은닉층에서의 노드수는 시행착오적으로 결정되게 된다. 이러한 많은 훈련패턴의 준비와 최적의 신경망 구조 결정을 위해서는 많은 시간이 필요하다. 본 논문에서는 이러한 단점들을 극복하기 위해 확률신경망을 패턴분류기로 사용하였다. 이를 판형철도교의 손상평가에 수치해석적으로 검증하였다. 또한 확률신경망을 이용한 철도판형교 손상평가시 적절한 훈련패턴 선택을 위해 모드형상과 고유진동수를 사용한 경우의 적용성에 대해 검토하였다.

콘크리트 표면 균열 패턴인식 기법 개발 (A Technique for Pattern Recognition of Concrete Surface Cracks)

  • 이방연;박연동;김진근
    • 콘크리트학회논문집
    • /
    • 제17권3호
    • /
    • pp.369-374
    • /
    • 2005
  • 이 연구의 목적은 화상처리 기법과 신경회로망을 이용하여 다섯가지 균열 패턴 즉, 횡방향, 종방향, 대각선($-45^{\circ}$) 대각선($+45^{\circ}$) 그리고 비방향성 균열의 패턴을 인식할 수 있는 기법을 제안하는 것이다. 제안된 화상처리 알고리즘과 인공 신경회로망 모델은 MATLAB 언어를 이용하여 구현하였다. 인공 신경회로망의 입력층에 들어갈 패턴인자는 Total projection technique를 통해 구하였으며, 인공 신경회로망의 구조(은닉층의 수와 은닉노드의 수)와 가중치 값은 가상 균열 화상을 사용하여 학습을 통해 결정하였다. 인공 신경회로망의 학습은 Bayesian regularization 기법을 도입함으로써 과적합 문제가 발생하지 않도록 하였으며, 이 연구에서 제안한 기법의 적합성을 판정하기 위하여 총 38개의 실제 균열 화상을 사용하여 시험하였다. 검증 시험 결과내에서는 이 연구에서 제안한 기법이 사람의 균열 패턴 인식결과와 정확히 일치하는 결과것으로 나타났다.

초임계 압력조건에서 기체수소-액체산소 연소해석의 층류화염편 라이브러리에 대한 인공신경망 학습 적용 (Application of Artificial Neural Network to Flamelet Library for Gaseous Hydrogen/Liquid Oxygen Combustion at Supercritical Pressure)

  • 전태준;박태선
    • 한국추진공학회지
    • /
    • 제25권6호
    • /
    • pp.1-11
    • /
    • 2021
  • 층류화염편 라이브러리에 대한 효율적인 계산과정을 개발하기 위하여 초임계 압력조건의 기체수소/액체산소 연소기에 대해 인공신경망을 이용한 기계학습과정이 적용되었다. 학습성능과 계산효율성에 근거한 최적의 계산과정을 찾기 위하여 은닉층에 대한 ReLU와 쌍곡탄젠트 함수의 25가지 조합이 선택되었다. 정확성이 우수한 높은 학습성능을 얻는데 쌍곡탄젠트 활성화함수가 적절하였다. 인공신경망의 학습성능을 개선하기 위해서 학습데이터 변환이 제안되었다. 4개의 은닉층에 최적의 노드를 배치할 때 학습성능 및 계산비용 관점에서 모두 효율적인 것으로 나타났다. 층류화염편 라이브러리의 보간법보다 인공신경망을 사용하는 경우 전체 계산시간은 37%, 시스템 메모리는 99.98% 감소되었다.

기계학습(machine learning) 기반 터널 영상유고 자동 감지 시스템 개발을 위한 사전검토 연구 (A preliminary study for development of an automatic incident detection system on CCTV in tunnels based on a machine learning algorithm)

  • 신휴성;김동규;임민진;이규범;오영섭
    • 한국터널지하공간학회 논문집
    • /
    • 제19권1호
    • /
    • pp.95-107
    • /
    • 2017
  • 본 논문에서는 제도적으로 운영 중인 터널내 CCTV들로부터 실시간으로 들어오는 영상들을 최신 딥러닝 알고리즘을 이용, 학습시켜 다양한 조건의 터널환경에서 돌발 상황을 감지하고 그 돌발 상황의 종류들을 분류해 내는 시스템 개발을 위한 사전검토 연구를 수행하였다. 사전검토 연구를 위해, 2개의 도로현장의 교통류 CCTV영상 일부를 이용하여 가용한 전통적인 영상처리기법으로 영상내부로 집입하는 차량을 감지하고, 이동경로를 추적하여 일정 시간간격의 이동 차량의 좌표와 시간정보를 추출하고 학습자료를 구성하였다. 각 차량의 이동정보는 차선변경, 정차 등 6가지의 이벤트 정보와 연계된다. 차량 이동정보와 이벤트로 구성된 학습자료는 레질리언스(resilience) 기계학습 알고리즘을 이용하여 학습하였다. 2개의 은닉층을 설정하고, 각 은닉층의 노드수에 대한 9개의 은닉구조 모델을 설정하여 매개변수 연구를 수행하였다. 본 사전검토의 경우에는 첫 번째, 두 번째 은닉층 노드수가 각각 300개와 150개로 설정된 모델이 합리적으로 가장 추론정확도가 높은 것으로 평가되었다. 이로부터 일반화되기 매우 힘든 복잡한 교통류 상황을 기계학습을 이용하여 어떠한 사전 규칙설정 없이도 교통류의 특징들을 정확히 자동으로 감지할 수 있는 가능성을 보였다. 본 시스템은 시스템의 운용을 통해 지속적으로 교통류 영상과 이벤트 정보가 늘어난다면, 자동으로 그 시스템의 인지능력과 정확도가 자동으로 향상되는 효과도 기대할 수 있다.

하천수위표지점에서 신경망기법을 이용한 홍수위의 예측 (The Flood Water Stage Prediction based on Neural Networks Method in Stream Gauge Station)

  • 김성원;호세살라스
    • 한국수자원학회논문집
    • /
    • 제33권2호
    • /
    • pp.247-262
    • /
    • 2000
  • 본 연구에서는 낙동강유역의 주요 수위표지점중 진동수위표지점에서 홍수위를 예측하기위한 신경망모형인 WSANN모형이 제시되었다. WSANN모형은 모멘트방법, 초기조건의 개선 및 적응학습속도에 의해 보완되어진 개선된 역전파훈련 알고리즘을 이용하였고, 본 연구에 사용된 자료는 훈련자료와 테스팅자료로 분할하였으며, 최적 은닉층 노드수를 결정하기 위하여 은닉층노드와 임계학습횟수로부터 경험식이 유도되었다. 그리고 WSANN모형의 보정은 4개의 훈련자료에 의해 실시되었으며, WSANN22와 WSANN32모형이 모델의 검증에 사용될 최적모형으로 결정되었다. 모형의 검증은 훈련되지 않은 2개의 테스팅자료를 이용하여 모형의 적합성을 평가하기 위하여 이루어 졌으며, 통계분석의 결과를 통하여 홍수위를 합리적으로 예측하는 것으로 나타났다. 따라서 본 연구의 결과를 기본으로 신경망기법을 이용한 실시간 홍수예경보 시스템의 구축 및 홍수위의 제어에 관한 지속적인 연구가 필요것으로 사료된다.

  • PDF

텍스트 마이닝에서 심층 신경망을 이용한 문서 분류 (Document classification using a deep neural network in text mining)

  • 이보희;이수진;최용석
    • 응용통계연구
    • /
    • 제33권5호
    • /
    • pp.615-625
    • /
    • 2020
  • 문서-용어 빈도행렬은 그룹정보가 존재하는 문서들의 용어를 추출한 것으로 일반적인 텍스트 마이닝에서의 자료이다. 본 연구에서는 연구 분야 성격에 따른 문서 분류를 위해 문서-용어 빈도행렬을 생성하고, 전통적인 용어 가중치 함수인 TF-IDF와 최근 잘 알려진 용어 가중치 함수인 TF-IGM을 적용하였다. 또 용어 가중치가 적용된 문서-용어 가중행렬에 문서분류 정확도 향상을 위해 핵심어를 추출하여 문서-핵심어 가중행렬을 생성하였다. 핵심어가 추출된 행렬을 바탕으로, 심층 신경망을 이용해 문서를 분류하였다. 심층 신경망에서 최적의 모델을 찾기 위해 매개변수인 은닉층과 은닉노드수를 변화해가며 문서 분류 정확도를 확인하였다. 그 결과 8개의 은닉층을 가진 심층 신경망 모델이 가장 높은 정확도를 보였으며 매개변수 변화에 따른 모든 TF-IGM 문서 분류 정확도가 TF-IDF 문서 분류 정확도보다 높은 것을 확인하였다. 또한 개별 범주에 대한 문서 분류 분석 결과를 서포트 벡터 머신과 비교했을 때 심층 신경망이 대부분의 결과에서 더 좋은 정확도를 보임을 확인하였다.

다중요인모델에 기반한 텍스트 문서에서의 토픽 추출 및 의미 커널 구축 (Multiple Cause Model-based Topic Extraction and Semantic Kernel Construction from Text Documents)

  • 장정호;장병탁
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권5호
    • /
    • pp.595-604
    • /
    • 2004
  • 문서 집합 내의 개념 또는 의미 관계의 자동 분석은 보다 효율적인 정보 획득과 단어 이상의 개념 수준에서의 문서간 비교를 가능케 한다. 본 논문에서는 다중요인모델에 기반 하여 텍스트 문서로부터 토픽들을 추출하고 이로부터 의미 커널(semantic kernel)을 구축하여 문서간 유사도를 측정하는 방안을 제시한다. 텍스트 문서는 내재된 토픽들의 다양한 결합에 의해 생성된다고 가정하며 하나의 토픽은 공통 주제에 관련되거나 적어도 자주 같이 나타나는 단어들의 집합으로 정의한다. 다중요인모델은 은닉층을 갖는 하나의 네트워크 형태로 표현되며, 토픽을 표현하는 단어 집합은 은닉노드로부터의 가중치가 높은 단어들로 구성된다. 일반적으로 이러한 다중요인 네트워크에서의 학습과 추론과정을 용이하게 하기 위해서는 근사적 확률 추정 기법이 요구되는데, 본 논문에서는 헬름홀츠 머신에 의한 방법을 활용한다. TDT-2 문서 집합에 대한 실험에서 토픽별로 관련 있는 단어 집합들을 추출할 수 있었으며, 4개의 텍스트 집합에 대한문서 검색 실험에서는 다중요인모델의 분석결과에 기반 한 의미 커널을 사용함으로써 기본 벡터공간 모델에 비해 평균정확도 면에서 통계적으로 유의한 수준의 성능 향상을 얻을 수 있었다.

R과 텐서플로우 딥러닝 성능 비교 (A Deep Learning Performance Comparison of R and Tensorflow)

  • 장성봉
    • 문화기술의 융합
    • /
    • 제9권4호
    • /
    • pp.487-494
    • /
    • 2023
  • 본 연구에서는 무료 딥러닝 도구인 R과 텐서플로우에 대한 성능 비교를 수행하였다. 실험에서는 각 도구를 사용하여 6종류의 심층 신경망을 구축하고 10년간의 한국 온도 데이터셋을 사용하여 신경망을 학습시켰다. 구축된 신경망의 입력층 노드 갯수는 10개, 출력층은 5개로 설정 하였으며, 은닉층은 5, 10, 20개로 설정하여 실험을 진행 하였다. 학습 데이터는 2013년 3월 1일부터 2023년 3월 29일까지 서울시 강남구에서 수집된 온도 데이터 3681건을 사용하였다. 성능 비교를 위해, 학습된 신경망을 사용하여, 5일간의 온도를 예측하고 예측된 값과 실제값을 사용하여 평균 제곱근 오차(root mean square error, RMSE)값을 측정하였다. 실험결과, 은닉층이 1개인 경우, R의 학습 오차는 0.04731176이었으며, 텐서플로우는 0.06677193으로 측정되었으며, 은닉층이 2개인 경우에는 R이 0.04782134, 텐서플로 우는 0.05799060로 측정되었다. 전체적으로 R이 더 우수한 성능을 보였다. 우리는 기계학습을 처음 접하는 사용자들에게 두 도구에 대한 정량적 성능 정보를 제공함으로써, 도구 선택에서 발생하는 어려움을 해소하고자 하였다.

무선 센서 네트워크에서의 통신 근원지 및 도착지 은닉(제2부) : 프로토콜 평가 (Concealing Communication Source and Destination in Wireless Sensor Networks (Part I) : Protocol Evaluation)

  • 차영환
    • 한국전자통신학회논문지
    • /
    • 제8권3호
    • /
    • pp.379-387
    • /
    • 2013
  • 대규모 무선 센서 네트워크에 있어서 광역도청에 대응하여 통신 근원지와 도착지의 위치기밀을 유지하기 위해서는 흔히 과다한 더미패킷들이 발생된다. 앞서의 연구에서는 데이터패킷 전송 동안에 근원지와 도착지를 포함하는 일정 범위 내의 노드들만이 빈 타임-슬롯마다 더미패킷을 발생하도록 하는 위치보안 라우팅 프로토콜 ELPR(End-node Location Privacy Routing)을 제안하였다. 이 논문에서는 고정된 보안성을 갖는 PCM(Periodic Collection Method)에 비해 ELPR은 다양한 위치보안 수준을 제공함을 보였다. 시뮬레이션을 통해 ELPR은 노드들의 수나 데이터패킷들이 많은 경우, PCM보다 발생 패킷 수에 있어서 경제성 있는 위치보안이 가능함을 확인하였다.

스케일링-웨이블릿 혼합 신경회로망 구조 설계 (Design the Structure of Scaling-Wavelet Mixed Neural Network)

  • 김성주;김용택;서재홍;조현찬;전홍태
    • 한국지능시스템학회논문지
    • /
    • 제12권6호
    • /
    • pp.511-516
    • /
    • 2002
  • 신경회로망은 차원이 확장됨에 따라 학습에 필요한 계산량이 기학급수적으로 증가하는 문제가 발생한다. 이를 극복하기 위해 직교성을 지닌 웨이블릿 신경회로망이 제안되었다. 웨이블릿 함수의 경우 스케일과 중심을 결정함으로써 신경회로망의 노드로 구성된다. 본 논문에서는 웨이블릿 함수를 이용하여 망을 구성하는 과정에 스케일링 함수를 함께 은닉층의 노드로 복합 구성함으로써 스케일링 함수를 이용하여 대강 근사(rough approximation)를 행한 다음, 웨이블릿 함수를 이용하여 미세 근사(fine approximation)를 행하도록 구성하는 복합 신경회로망을 제안한다. 또한, 복합 신경회로망을 구성하는 과정에서 미세 근사에 필요한 웨이블릿 함수의 개수를 유전 알고리즘을 이용하여 결정한다.