• 제목/요약/키워드: 은닉학습신호

검색결과 39건 처리시간 0.025초

직교주파수분할다중화기반 전력선통신에서 대역 효율적인 전송기법 (A spectral efficient transmission method for ofdm-based power line communications)

  • 김병욱
    • 한국산업정보학회논문지
    • /
    • 제19권4호
    • /
    • pp.25-32
    • /
    • 2014
  • 전력선통신은 스마트그리드 기반의 서비스가 제공될 수 있는 네트워크를 위한 미래지향적 기술이다. 전력선통신 채널의 주파수 선택적 페이딩이 있는 환경에서, 직교주파수분할다중화 기술은 신뢰성 있는 통신을 제공한다. 본 논문에서는 직교주파수분할다중화 기반의 전력선통신 시스템에서 은닉학습신호를 이용한 주파수사용효율이 높은 기법을 제안한다. 은닉학습신호를 사용하면 채널 추정용 주파수를 따로 소모하지 않고도 채널 추정이 가능하고, 이는 데이터와의 간섭을 줄일 수 있는 학습신호에 할당된 파워를 이용해서 해결할 수 있다. 컴퓨터 시뮬레이션을 통해 제안한 기법이 기존의 기법들에 비해 저전압 및 중전압 송전 라인에서 높은 성취 가능한 데이터 율을 보여준다.

경쟁학습을 갖는 Radial Basis Function Networks 결정 궤한 등화기 (Radial Basis Functions Networks Decision Feedback Equalizer with Competitive Learning)

  • 서창우
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1997년도 영남지회 학술발표회 논문집 Acoustic Society of Korean Youngnam Chapter Symposium Proceedings
    • /
    • pp.13-16
    • /
    • 1997
  • 본 논문에서는 Bayesian 결정 이론을 이용한 기존의 Radial Basis Function Networks 이되는 출력층에서 선형 조합되는 것과는 다른 형태의 방법을 제안하고자 한다. 제안하고자 하는 방법은 은닉층의 출력값과 가중치와의 곱해진 값이 출력층의 입력으로 들어오는데 이들 입력신호를 경쟁을 통하여 가장 큰 값만을 출력신호 인정하는 방법이다. 이런 경우에 파라미터 갱신을 할 때도 모든 가중치를 다 갱신하는 것이 아니라 출력되는 은닉층에 연결된 가중치만을 갱신하게된다. 이렇게 할 경우 계산량 감소뿐만 아니라 학습시간을 단축할 수 있다는 장점이 있다. 그리고 제안한 방법을 이용할 경우 비선형 분류문제에서도 우수한 성능결과를 확인 할 수 있었으며 기존의 RBFN rhk Wiener Filter와 성능을 비교하였다.

  • PDF

강화학습 기반의 음성향상기법 (Speech enhancement based on reinforcement learning)

  • 박태준;장준혁
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2018년도 춘계학술발표대회
    • /
    • pp.335-337
    • /
    • 2018
  • 음성향상기법은 음성에 포함된 잡음이나 잔향을 제거하는 기술로써 마이크로폰으로 입력된 음성신호는 잡음이나 잔향에 의해 왜곡되어지므로 음성인식, 음성통신 등의 음성신호처리 기술의 핵심 기술이다. 이전에는 음성신호와 잡음신호 사이의 통계적 정보를 이용하는 통계모델 기반의 음성향상기법이 주로 사용되었으나 통계 모델 기반의 음성향상기술은 정상 잡음 환경과는 달리 비정상 잡음 환경에서 성능이 크게 저하되는 문제점을 가지고 있었다. 최근 머신러닝 기법인 심화신경망 (DNN, deep neural network)이 도입되어 음성 향상 기법에서 우수한 성능을 내고 있다. 심화신경망을 이용한 음성 향상 기법은 다수의 은닉 층과 은닉 노드들을 통하여 잡음이 존재하는 음성 신호와 잡음이 존재하지 않는 깨끗한 음성 신호 사이의 비선형적인 관계를 잘 모델링하였다. 이러한 심화신경망 기반의 음성향상기법을 향상 시킬 수 있는 방법 중 하나인 강화학습을 적용하여 기존 심화신경망 대비 성능을 향상시켰다. 강화학습이란 대표적으로 구글의 알파고에 적용된 기술로써 특정 state에서 최고의 reward를 받기 위해 어떠한 policy를 통한 action을 취해서 다음 state로 나아갈지를 매우 많은 경우에 대해 학습을 통해 최적의 action을 선택할 수 있도록 학습하는 방법을 말한다. 본 논문에서는 composite measure를 기반으로 reward를 설계하여 기존 PESQ (Perceptual Evaluation of Speech Quality) 기반의 reward를 설계한 기술 대비 음성인식 성능을 높였다.

다중 $H_\infty$ 필터에 의한 강인한 음성향상 (Robust Speech Enhancement By Multi $H_\infty$ Filter)

  • 김준일;이기용
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 2004년도 춘계학술발표대회 논문집 제23권 1호
    • /
    • pp.85-88
    • /
    • 2004
  • 칼만/위너 필터 같은 기존의 음성향상 알고리즘은 잡음의 선험적 지식을 요구하고, 음성신호와 추정신호의 오차분산을 최소화하는데 중점을 두었다. 따라서, 잡음에 대한 통계적 추정에 오류가 있을 경우 결과에 악영향을 미칠 수 있다. 그러나 $H_\infty$ 필터는 잡음에 대한 어떠한 가정이나 선험적 지식을 요구하지 않는다. $H_\infty$ 필터는 최소상계(Upper Bound Least)를 적용하여 추정된 모든 신호들로부터 최소 에러 신호를 갖는 최상의 추정신호를 찾아내므로 칼만/위너 필터보다 잡음의 변화에 강인하다. 본 논문에서는 학습 신호로부터 은닉 마코프 모델의 파리미터를 추정한 후, 오염된 신호를 고정된 개수의 $H_\infty$ 필터를 통과시켜 각 출력에 가중된 합으로 향상된 음성 신호를 구한다. 음성의 통계적 특성을 이용하여 모델 파라미터를 추정하는 은닉 마코프 모델과 잡음의 변화에 강인한 $H_\infty$ 알고리즘을 사용해서, 다중 $H_\infty$필터에 의한 강인한 음성향상 방법을 제안하였다.

  • PDF

퍼지 보상기와 자기구성 신경회로망을 이용한 매니퓰레이터의 역기구학 해에 관한 연구 (A Study on the Soiution of Inverse Kinematic of Manipulator using Self-Organizing Neural Network and Fuzzy Compensator)

  • 김동희;이수흠;신위재
    • 융합신호처리학회논문지
    • /
    • 제2권3호
    • /
    • pp.79-85
    • /
    • 2001
  • 본 논문에서는 퍼지 보상기와 자기구성 신경회로망을 이용하여 3축 매니퓰레이터의 역 기구학 해를 구하는 방법을 제안한다. 가우시안 위치 함수를 활성화 함수로 사용하는 자기구성 신경회로망은 학습 시작시 1개의 은닉층 노드를 가지고 학습을 하면서 점차적으로 은닉층의 노드수를 증가시킴으로서 최적의 노드수를 얻을 수 있으며, 퍼지 보상기는 신경회로망의 양호한 학습비를 얻는다. 이와 같이 시스템을 구성하여 빠른 학습속도와 학습비의 개선 그리고 빠른 정상상태로의 수렴을 확인하였다.

  • PDF

다층회귀신경망을 이용한 음성인식 (Speech Recognitioin Using Multilayered Recurrent Neural Networks)

  • 어태경
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1998년도 제15회 음성통신 및 신호처리 워크샵(KSCSP 98 15권1호)
    • /
    • pp.267-271
    • /
    • 1998
  • 신경망에 의한 음절과 연속음성 인식시 동특성처리의 한방법으로 회귀신경망을 이용한다. 본 연구는 비회귀형 상위은닉층과 회귀형 하위은닉층을 가진 4층 구조의 다층회귀신경망으로 예측기를 반들어 나성화자 5명이 CV형 음절 14개, CVC형 음절 14개를 각각 5회씩 발음한 총 700개의 음성중 3회분인 420개 음성으로 학습한 후 나머지 2회분인 280개 음성으로 인식을 평가한다. 입력신호의 예측차수와 상, 하위 은닉층으 뉴런수를 변경시키면서 각각의 인식률을 조사해 본 결과 상위 은닉층의 뉴런이 10개이고 하위 은닉층의 뉴런이 10개와 15개 그리고 예측차수가 3,4차일 때 가장 양호한 인식기로 동작한다는 것을 알 수 있었다. 이 때 나타난 인식률은 Elman 망보다 다소 우세하다.

  • PDF

역전파 신경망을 이용한 주가 예측 (Stock Price Prediction Using Backpropagation Neural Network)

  • 박사준;이상훈;고삼일;김기태
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 가을 학술발표논문집 Vol.29 No.2 (2)
    • /
    • pp.328-330
    • /
    • 2002
  • 본 논문에서는 역전파 신경망(Backpropagation Neural Network)을 시계열 데이터인 주가 데이터를 이용한 주가 예측의 정확도를 향상시키기 위한 학습 방법으로 적용하였다. 실제 증권거래소의 종목 데이터에서 비교적 등락폭이 안정적인 각 산업분야별 5개 기업의 5일 이동평균선 데이터 240개를 훈련 데이터로, 20개는 테스트 데이터로 이용하였다. 선정된 입력 데이터를 은닉층의 개수와 은닉 노드의 개수 등을 달리 하면서 10,000번의 훈련을 통해서 실험 하였으며, 그 결과 1개의 은닉층을 사용한 네트워크1은 20개의 테스트 데이터 사이의 19개의 신호 중 14개를 예측하였고, 2개의 은닉층을 사용한 네트워크 2는 16개를 예측하였다. 시험 결과를 통해서 보듯이 은닉층을 2개 사용하였을 때 보다 좋은 실험 결과를 얻을 수 있었으며, 역전파 신경망 모델이 주가 예측에 적합하다는 것이 증명되었다.

  • PDF

혼합 은닉필터모델 (HFM)을 이용한 비정상 잡음에 오염된 음성신호의 향상 (Speech Enhancement Based on Mixture Hidden Filter Model (HFM) Under Nonstationary Noise)

  • 강상기;백성준;이기용;성굉모
    • 한국음향학회지
    • /
    • 제21권4호
    • /
    • pp.387-393
    • /
    • 2002
  • 비정상 잡음에 오염된 음성신호의 향상을 위하여 혼합 은닉필터모델 (HFM: Hidden Filter Model)에 기초한 기법을 제안하였다. 오염된 음성신호를 선형상태방정식으로 모델링하고 파라미터는 마코프 모델에 따른다고 가정하였다. 이 파라미터들은 잡음에 오염되지 않은 학습신호로부터 추정할 수 있다. 추정과정은 혼합 상호복합모델 (IMM: Interacting Multiple Model)에 기초하여 이루어지며, 음성신호의 추정값은 상호작용하는 병렬의 칼만 필터들의 가중합으로 주어진다. 실험결과로부터 제안한 방법의 성능이 기존의 방법에 비해 개선되었음을 확인할 수 있었다.

RBFN을 이용한 음소인식에 관한 연구 (A Study on the Phoneme Recognition using RBFN)

  • 안종영
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1995년도 제12회 음성통신 및 신호처리 워크샵 논문집 (SCAS 12권 1호)
    • /
    • pp.88-91
    • /
    • 1995
  • 개층형 신경망은 교사신호들의 학습으로 원하는 입출력간의 매핑을 할 수 있으므로 패턴분류를 위해 사용되어왔다. 본 논문은 계층형 신경망의 일종인 RBFN 중 GPFN 과 PNN으로 한국어 음소인식을 수행하였다. RBFN 의 구조는 계층형 신경망과 유사하나 차이점으로는 은닉층에서 시그모이드 함수, 참조벡터 및 학습알고리듬의 선택이 다르다. 특히 PNN 의 시그모이드 함수는 지수를 포함한 함수들로 대체되며 학습없이 패턴을 분류하므로 계산시간이 빠르게 수행된다. 본 실험에서는 한국어 단음절에서 모음과 자음을 추출하여 음소인식을 수행하였다. 실험 결과 학습과 평가데이타에 의한 인식률은 계층형 신경망과 비교하여 향상 되었으며, Hybrid 구성에 의한 실험에서도 항상된 인식률을 얻을 수 있었다.

  • PDF

독립성분분석을 이용한 강인한 화자인식 (Robust Speaker Recognition using Independent Component Analysis)

  • 장길진
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1998년도 학술발표대회 논문집 제17권 2호
    • /
    • pp.327-330
    • /
    • 1998
  • 독립성분분석(ICA: Independent Component Analysis)이란 특징이 상이한 둘 이상의 신호들이 선형적으로 결합되어 있을 때 이를 효과적으로 분리하는 방법들을 통칭하며 잡음제거, 음질개선 및 신호처리 분야에서 많이 활용되고 있다. 본 논문에서는 전화음성 화자인식 시스템의 성능향상을 위해 독립성분분석을 이용하는 방법을 제안한다. 먼저 화자가 발성한 음성신호의 켑스트럼 계수를 여러 채널 함수들의 선형적인 합으로 가정하고, 독립성분분석을 이용하여 얻은 새로운 켑스트럼 벡터를 학습과 인식에 사용하였다. 실험자료는 잔화음성 화자식별기의 성능평가에 널리 쓰이고 있는 SPIDRE를 사용하였고 regodic 은닉 마코프 모델을 이용하여 문장 독립 화자식별 시스템을 구성하였다. 학습음성의 특징과 실험음성의 특징이 다른 조건에서 기존의 채널 정규화 방법들에 비해 10~15%이상 인식률이 향상되었다.

  • PDF