본 논문에서는 보다 강인한 워터마크의 은닉을 위하여 웨이브릿 변환영역에서 정상상태 일반화 가우스(generalized Gaussian) 모델을 이용한 적응 워터마크 은닉 기술을 제안한다. 워터마크는 고주파 영역에서 연속 부대역 양자화(successive subband quantization: SSQ)를 이용하여 다해상도 영상의 웨이브릿 계수 중에서 시각적 중요 계수(perceptually significant coefficients: PSC)에만 은닉한다. 워터마크를 은닉하기 위한 지각모델은 정상상태의 통계적 특성을 이용한다. 이것은 국부영상 특성을 갖는 NVF(noise visibility function) 함수에 의하여 계산되어진다. 은닉모델은 다해상도내의 각 서브밴드별 분산과 형상계수(shape parameter)를 사용한다. 여러 가지 공격 실험결과 우수한 비가시성과 강인성을 확인하였다.
본 논문에서는 좌-우향은닉 마코프 모델 (Left-Right Hidden Markov Model)에서 상태결정을 갖는 음성향상방법을 제안하였다. 은닉 마코프 모델에 기초를 둔 음질향상 방법은 성능은 우수하나, 모든 상태에 대해서 음질향상 알고리즘을 계산하므로, 계산량이 많고, 메모리가 많이 필요하여 실시간 처리에 부적절하다. 좌-우향 은닉 마코프 모델은 마코프 모델을 좌측에서 우측으로의 전이만 허용하는 모델로 단순화시켜 현재 상태에서 현재 상태나 다음 상태로 전이될 수 있는 특성을 가지고 있다. 본 논문에서는, 좌-우향 은닉 마코프 모델에서 유사도비 테스트 (Log-Likelihood Ratio Test)를 이용하여 현재 음성의 상태를 결정하는 알고리즘을 제안하였다. 현재 음성의 상태를 알고 있다면, 현재 상태에 대해서만 음질향상 알고리즘을 계산하므로, 계산량이 줄어든다. 제안된 방법의 성능 평가를 위하여 음질 향상 시간과 신호 대 잡음비를 비교하였다. 제안된 방법은 기존의 방법에 비해 음질향상의 결과는 약 0.2∼0.4 dB 정도 떨어졌지만, 계산량을 많이 줄일 수 있었다.
본 논문에서는 보다 효과적이고 강인한 워터마크 은닉을 위한 방법으로 웨이브릿 변환 영역에서 영상의 통계적 특성에 기초한 비정상상태(non-stationary)에서와 정상상태(stationary) 일반화 가우스(generalized Gaussian: GG)모델을 이용한 적응 워터마크 은닉 기술을 제안한다. 워터마크는 고주파 영역에서 연속 부대역 양자화(successive subband quantization: SSQ)를 이용하여 다해상도 영상의 웨이브릿 계수 중에서 시각적 중요 계수(perceptual significant coefficients: PSC)를 선택하여 삽입한다. 워터마크 은닉을 위한 지각 모델은 NVF(noise visibility function)함수에 의해 계산된다. 이것은 비정상상태와 정상상태의 통계적 특성을 이용하고, 국부영상 특성을 가진다. 은닉모델은 다해상도내의 각 부대역별 분산과 형상계수(shape parameter)를 사용한다. Stirmark benchmark test에 근거하여 여러 가능한 왜곡에 대한 실험에서 강인성과 비가시성에서의 우수함을 확인하였고, 비정상상태의 경우와 정상상태의 경우를 비교하였다.
전통적인 빈도해석은 정상성 가정을 기초로 단일 확률분포를 강우 및 홍수량 자료에 적용하는 과정을 통해 확률수문량을 추정하는 것을 목적으로 하고 있다. 그러나 전지구적인 기상학적 변동성 및 기후변화로 기인하는 극치수문량의 발생 빈도 및 양적 크기의 변화는 확률통계학적 관점에서 서로 다른 분포특성을 가지게 된다. 대표적인 기상변동성인 엘니뇨가 발생하는 경우 지역에 따라 홍수 및 가뭄이 발생 발생하게 되며, 이러한 극치수문량은 일반적으로 나타나는 홍수 및 가뭄의 분포특성과는 상이한 경우가 많다. 즉, 2개 이상의 확률분포 특성이 혼재된 혼합분포의 특성을 가지는 경우가 나타내게 되며 이를 고려한 빈도해석 기법의 개발 및 적용이 필요하다. 혼합분포를 활용한 빈도해석에서 가장 중요한 사항 중에 하나는 개별 분포에 적용되는 가중치를 추정하는 것으로서 통계학적 관점에서 자료의 특성에 근거하여 내재되어 있는 은닉상태(latent process)를 추정하는 과정과 유사하다. 이와 더불어 앞서 언급된 기상학적 변동성을 빈도해석에 반영하기 위한 비정상성 해석기법의 개발 및 적용도 필요하다. 본 연구에서는 혼합분포를 활용한 비정상성빈도해석모형을 개발하는데 목적이 있으며 개별매개변수의 동적거동 뿐만 아니라 가중치에 대한 시간적인 종속성도 고려할 수 있는 모형으로 동적모형으로 다양한 실험적 해석이 가능하다. 본 연구에서는 개발된 모형을 기반으로 엘니뇨와 같은 기상변동성에 따른 강우 및 홍수빈도해석 측면에서 은닉상태에 변화, 이로 인한 확률분포의 특성 및 설계수문량의 동적변동성을 평가하고자 한다.
본 논문은 연속밀도 은닉마코프모델에서 각 상태별 혼합성분 개수를 결정하는 방법을 제안한다. 지금까지의 대부분의 연구가 연속밀도 은닉마코프모델에서 화자의 스펙트럼 특성에 상관없이 각 상태별 동일한 혼합성분 개수를 적용하였다. 이런 접근방법은 많은 계산량을 요구할 뿐만 아니라, 각 상태의 특성을 무시하고 있기 때문에 각 상태별 음성신호의 정확한 모델링을 할 수 없다. 따라서 본 논문에서 제안한 연속밀도 은닉마코프모델의 파라미터 추정은 각 상태별 혼합성분에 대한 발생 확률값에 따라서 결정하였다. 또한 혼합성분의 개수를 줄이는 과정에서 신호의 상관성을 줄이고 시스템의 전체적인 안정성을 얻기 위해서 주성분 분석을 이용하였다. 제안한 방법은 기존의 은닉마코프모델에 비해서 평균 10% 작은 혼합성분 개수를 이용했을 때를 기준으로 실험하였다. 실험결과에서 혼합성분 결정만을 적용했을 때 거의 비슷한 성능을 얻을 수 있었다. 그리고 주성분 분석을 이용했을 때, 특정벡터가 16 차일 때 평균 0.35%의 성능감소가 일어났지만, 25 차에서는 평균 0.65%의 성능개선을 얻을 수 있었다.
본 논문은 손실이 발생하기 쉬운 무선 네트워크에서 계층 부호화를 이용한 비디오 데이터의 적응적 오류 은닉기법을 제안한다. 비디오 데이터는 압축과정에서 중복성이 제거되므로, 전송 시 무선채널과 같이 손실이 발생하기 쉬운 네트워크에서는 오류에 더욱 더 민감하다. 본 논문에서 제안하는 오류 은닉방법은 두 가지이다. 첫째는 기본계층의 움직임 벡터를 이용하여 이전 VOP로 은닉하는 방법이고, 두 번째는 오류가 발생한 영역을 움직임의 유무에 따라 움직임이 있는 부분은 기본계층의 같은 위치영역 정보로 은닉하고 움직임이 없는 부분은 이전 VOP의 같은 위치 영역 정보로 은닉하는 적응적인 방법이다. 본 논문에서는 제안하는 오류 은닉 방법을 계층 부호화된 비디오 데이터에 적용했을 때 매우 유용함을 입증한다. 실험 결과에서 무선네트워크 망의 상태에 따라 달라지는 에러 패턴과 영상의 특성에 따라, 기본계층의 정보를 참조하거나 이전 VOP 정보를 참조함으로써 좀 더 나은 은닉방법임을 보였다. 본 논문에서는 계층부호화에 MPEG-4를 사용하는데, 더 나아가 DCT를 근간으로 하는 모든 비디오 코덱에 응용할 수 있다.
지금까지 많은 연구를 통하여 제안된 다양한 가뭄지수들은 사전에 정의된 등급을 통하여 가뭄을 평가하기 때문에 가뭄현상에 내재된 불확실성을 고려하지 못하고 있다. 본 연구에서는 월 유출량 자료에 내재되어 있는 불확실성을 고려하기 위해 은닉 마코프 모형(HMM) 기반의 가뭄지수(HMDI)를 제안하고, 이를 이용하여 수문학적 가뭄에 대한 확률론적 평가를 수행하였다. WAMIS에서 제공하는 한강유역의 평창강과 남한강상류의 월평균 유출량 자료(1966~2009)를 이용하여 3, 6, 12개월씩 누적시킨 후, HMM에 적용하여 은닉상태의 사후확률을 계산하였다. 연구방법의 검증을 위해 HMM을 이용하여 추정된 각 은닉상태 별 사후확률(HMDI)과 기준값에 의해 가뭄을 평가하는 방법 중 하나인 표준유출지수(SSI)와 비교를 하였다. 분석결과, 기존 가뭄지수(SSI)를 사용하였을 때는 하나의 지수로 특정 시점에서의 가뭄 상태를 판단하였지만, HMDI는 자료에내재된 불확실성을 이용하여 가뭄의 상태를 분류하였고, 이는 특정 시점에서 가뭄 상태들이 나타날 확률로 표현되었다. 또한, 실제 가뭄사례와의 비교를 통해서 HMDI가 SSI에 비하여 가뭄에 대한 재현능력이 우수한 것으로 나타났다.
최근 음성인식을 위한 대표적인 방법으로써 은닉 마르코프 모델이 사용되고 있으며, 이러한 방법은 음성의 특성을 잘 표현하도록 하는 음향적인 모델링 방법에 따라서 성능이 좌우된다. 본 논문에서는 상태에서의 출력확률은 견고히 추정하기 위한 방법으로 상태에서 의 출력활률을 소스들의 분포와 그들의 빈도로 가중한 출력분포로 표시하는 상태 의존 소스 양자화 모델링 방법을 제안한다. 이 방법은 한 상태 내에서 특징 파라미터들이 유사한 특성 을 가지며, 그들의 변이가 다른 상태에 있는 특징 파라미터들에 비해서 작다는 사실에 기반 한다. 실험결과에 의하면, 제안된 방법이 기존의 baseline시스템보다 단어 인식율의 경우는 2.7%, 문장 인식율의 경우 3.6%의 향상을 보였다. 이러한 결과로부터 제안된 SDSQ-DHMM이 인식율 향상면에서 유효하며, HMM에 있어서 상태별 출력확률의 견고한 추정을 위한 대안으로 사용될 수 있을 것으로 판단된다.
본 논문은 유비쿼터스 홈 네트워크 시스템에서 저장된 사용자 행동 프로파일 데이터에 은닉 마르코프 모델에 적용하여 사용자의 행동 상태를 예측하는 알고리즘을 제안한다. 은닉 마르코프 모델은, 순차 데이터를 갖는 패턴을 인식하기 위해서 데이터에 내포되어 있는 시간성을 적절히 표현하고, 그것으로부터 원하는 정보를 추론할 수 있는 대표적인 모델이다. 제안 알고리즘에서는 "행동 인지 시스템(Activity Recognition System)"에 의하여 저장된 행동 발생 횟수, 행동 지속시간, 행동이 발생된 위치 데이터를 학습 데이터로 이용하였다. 사용자의 행동에 가중치를 부여하여 사용자의 행동에 대한 흥미를 객관적으로 수식화 하는 방법을 제안하였으며 은닉 마르코프 모델을 이용하여 시간에 따른 가중치 변화를 구하여 사용자의 행동 상태 변화를 예측하였다. 제안 알고리즘은 현실적인 유비쿼터스 홈 네트워크 구축에 도움을 준다.
웨이블릿 변환은 영상을 분석하고 처리하는데 유용한 도구로써 영상 압축, 영상 잡음 제거 등의 분야에서 우수한 성능을 보여주었다. 웨이블릿 계수들은 은닉 마코프 트리(Hidden Markov Tree: HMT) 모델에 의해 효과적으로 모델링 될 수 있다. 그러나 영상 보간에서 은닉 마코프 트리 모델을 적용하기 위해서는 훈련 과정이 필요하며 훈련 과정에서 획득된 파라미터들이 입력 영상과 잘 맞지 않는 단점이 있다. 본 논문에서는 웨이블릿 영역에서 영상 보간을 위해 은닉 마코프 트리의 구조를 사용하되, 그 파라미터들은 훈련 과정 없이 부대역간의 통계적 특성을 이용하여 직접 추정한다. 제안 방법에서 웨이블릿 계수는 가우스 혼합 모델(Gauss Mixture Model: GMM)로 모델링 된다. 가우스 혼합 모델의 상태 천이 확률은 부대역간의 웨이블릿 계수의 통계적 천이 특성을 이용하여 결정하며, 각 상태의 분산은 웨이블릿 계수의 지수적 감소(exponential decay) 특성에 의해, 추정된다. 모의실험에서 제안 방법은 전통적인 bicubic 방법이나 훈련 과정을 필요로 하는 은닉 마코프 모델을 사용한 방법보다 여러 테스트 영상들에 대해서 개선된 성능을 보여주었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.