• 제목/요약/키워드: 은닉상태

검색결과 109건 처리시간 0.021초

다해상도를 갖는 정상상태 GG 모델을 이용한 적응 워터마크 은닉 기술 (Adaptive Image Watermark Embedding Using a Stationary GG Modeling within Multiresolution)

  • 김현천;권기룡;김종진
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2002년도 춘계학술발표논문집(하)
    • /
    • pp.886-889
    • /
    • 2002
  • 본 논문에서는 보다 강인한 워터마크의 은닉을 위하여 웨이브릿 변환영역에서 정상상태 일반화 가우스(generalized Gaussian) 모델을 이용한 적응 워터마크 은닉 기술을 제안한다. 워터마크는 고주파 영역에서 연속 부대역 양자화(successive subband quantization: SSQ)를 이용하여 다해상도 영상의 웨이브릿 계수 중에서 시각적 중요 계수(perceptually significant coefficients: PSC)에만 은닉한다. 워터마크를 은닉하기 위한 지각모델은 정상상태의 통계적 특성을 이용한다. 이것은 국부영상 특성을 갖는 NVF(noise visibility function) 함수에 의하여 계산되어진다. 은닉모델은 다해상도내의 각 서브밴드별 분산과 형상계수(shape parameter)를 사용한다. 여러 가지 공격 실험결과 우수한 비가시성과 강인성을 확인하였다.

  • PDF

좌-우향 은닉 마코프 모델에서 상태결정을 이용한 음질향상 (Efficient Speech Enhancement based on left-right HMM with State Sequence Decision Using LRT)

  • 이기용
    • 한국음향학회지
    • /
    • 제23권1호
    • /
    • pp.47-53
    • /
    • 2004
  • 본 논문에서는 좌-우향은닉 마코프 모델 (Left-Right Hidden Markov Model)에서 상태결정을 갖는 음성향상방법을 제안하였다. 은닉 마코프 모델에 기초를 둔 음질향상 방법은 성능은 우수하나, 모든 상태에 대해서 음질향상 알고리즘을 계산하므로, 계산량이 많고, 메모리가 많이 필요하여 실시간 처리에 부적절하다. 좌-우향 은닉 마코프 모델은 마코프 모델을 좌측에서 우측으로의 전이만 허용하는 모델로 단순화시켜 현재 상태에서 현재 상태나 다음 상태로 전이될 수 있는 특성을 가지고 있다. 본 논문에서는, 좌-우향 은닉 마코프 모델에서 유사도비 테스트 (Log-Likelihood Ratio Test)를 이용하여 현재 음성의 상태를 결정하는 알고리즘을 제안하였다. 현재 음성의 상태를 알고 있다면, 현재 상태에 대해서만 음질향상 알고리즘을 계산하므로, 계산량이 줄어든다. 제안된 방법의 성능 평가를 위하여 음질 향상 시간과 신호 대 잡음비를 비교하였다. 제안된 방법은 기존의 방법에 비해 음질향상의 결과는 약 0.2∼0.4 dB 정도 떨어졌지만, 계산량을 많이 줄일 수 있었다.

웨이브릿 변환 영역에서 스토케스틱 영상 모델을 이용한 내용기반 적응 워터마킹 (Content Adaptive Watermarking Using a Stochastic Image Modeling Based on Wavelet Transform Domain)

  • 김현천;강균호;권기룡;김종진
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2002년도 추계학술발표논문집
    • /
    • pp.283-286
    • /
    • 2002
  • 본 논문에서는 보다 효과적이고 강인한 워터마크 은닉을 위한 방법으로 웨이브릿 변환 영역에서 영상의 통계적 특성에 기초한 비정상상태(non-stationary)에서와 정상상태(stationary) 일반화 가우스(generalized Gaussian: GG)모델을 이용한 적응 워터마크 은닉 기술을 제안한다. 워터마크는 고주파 영역에서 연속 부대역 양자화(successive subband quantization: SSQ)를 이용하여 다해상도 영상의 웨이브릿 계수 중에서 시각적 중요 계수(perceptual significant coefficients: PSC)를 선택하여 삽입한다. 워터마크 은닉을 위한 지각 모델은 NVF(noise visibility function)함수에 의해 계산된다. 이것은 비정상상태와 정상상태의 통계적 특성을 이용하고, 국부영상 특성을 가진다. 은닉모델은 다해상도내의 각 부대역별 분산과 형상계수(shape parameter)를 사용한다. Stirmark benchmark test에 근거하여 여러 가능한 왜곡에 대한 실험에서 강인성과 비가시성에서의 우수함을 확인하였고, 비정상상태의 경우와 정상상태의 경우를 비교하였다.

  • PDF

혼합 분포와 은닉 과정 모의를 통한 비정상성 강우/빈도 빈도해석: 전지구 기상학적 변동성의 역할 (Mixed distributions and Laten Process over Nonstationary Rainfall/Flood Frequency Estimates over South Korea: The Role of Large Scale Climate Pattern)

  • 권현한
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.8-8
    • /
    • 2018
  • 전통적인 빈도해석은 정상성 가정을 기초로 단일 확률분포를 강우 및 홍수량 자료에 적용하는 과정을 통해 확률수문량을 추정하는 것을 목적으로 하고 있다. 그러나 전지구적인 기상학적 변동성 및 기후변화로 기인하는 극치수문량의 발생 빈도 및 양적 크기의 변화는 확률통계학적 관점에서 서로 다른 분포특성을 가지게 된다. 대표적인 기상변동성인 엘니뇨가 발생하는 경우 지역에 따라 홍수 및 가뭄이 발생 발생하게 되며, 이러한 극치수문량은 일반적으로 나타나는 홍수 및 가뭄의 분포특성과는 상이한 경우가 많다. 즉, 2개 이상의 확률분포 특성이 혼재된 혼합분포의 특성을 가지는 경우가 나타내게 되며 이를 고려한 빈도해석 기법의 개발 및 적용이 필요하다. 혼합분포를 활용한 빈도해석에서 가장 중요한 사항 중에 하나는 개별 분포에 적용되는 가중치를 추정하는 것으로서 통계학적 관점에서 자료의 특성에 근거하여 내재되어 있는 은닉상태(latent process)를 추정하는 과정과 유사하다. 이와 더불어 앞서 언급된 기상학적 변동성을 빈도해석에 반영하기 위한 비정상성 해석기법의 개발 및 적용도 필요하다. 본 연구에서는 혼합분포를 활용한 비정상성빈도해석모형을 개발하는데 목적이 있으며 개별매개변수의 동적거동 뿐만 아니라 가중치에 대한 시간적인 종속성도 고려할 수 있는 모형으로 동적모형으로 다양한 실험적 해석이 가능하다. 본 연구에서는 개발된 모형을 기반으로 엘니뇨와 같은 기상변동성에 따른 강우 및 홍수빈도해석 측면에서 은닉상태에 변화, 이로 인한 확률분포의 특성 및 설계수문량의 동적변동성을 평가하고자 한다.

  • PDF

화자인식에서 연속밀도 은닉마코프모델의 혼합밀도 결정방법 (Gaussian Density Selection Method of CDHMM in Speaker Recognition)

  • 서창우;이주헌;임재열;이기용
    • 한국음향학회지
    • /
    • 제22권8호
    • /
    • pp.711-716
    • /
    • 2003
  • 본 논문은 연속밀도 은닉마코프모델에서 각 상태별 혼합성분 개수를 결정하는 방법을 제안한다. 지금까지의 대부분의 연구가 연속밀도 은닉마코프모델에서 화자의 스펙트럼 특성에 상관없이 각 상태별 동일한 혼합성분 개수를 적용하였다. 이런 접근방법은 많은 계산량을 요구할 뿐만 아니라, 각 상태의 특성을 무시하고 있기 때문에 각 상태별 음성신호의 정확한 모델링을 할 수 없다. 따라서 본 논문에서 제안한 연속밀도 은닉마코프모델의 파라미터 추정은 각 상태별 혼합성분에 대한 발생 확률값에 따라서 결정하였다. 또한 혼합성분의 개수를 줄이는 과정에서 신호의 상관성을 줄이고 시스템의 전체적인 안정성을 얻기 위해서 주성분 분석을 이용하였다. 제안한 방법은 기존의 은닉마코프모델에 비해서 평균 10% 작은 혼합성분 개수를 이용했을 때를 기준으로 실험하였다. 실험결과에서 혼합성분 결정만을 적용했을 때 거의 비슷한 성능을 얻을 수 있었다. 그리고 주성분 분석을 이용했을 때, 특정벡터가 16 차일 때 평균 0.35%의 성능감소가 일어났지만, 25 차에서는 평균 0.65%의 성능개선을 얻을 수 있었다.

채널상태에 적응적인 계층 부호화를 이용한 오류 은닉 방법 연구 (Channel Condition Adaptive Error Concealment using Scalability Coding)

  • 한승균;박승호;서덕영
    • 한국통신학회논문지
    • /
    • 제29권1B호
    • /
    • pp.8-17
    • /
    • 2004
  • 본 논문은 손실이 발생하기 쉬운 무선 네트워크에서 계층 부호화를 이용한 비디오 데이터의 적응적 오류 은닉기법을 제안한다. 비디오 데이터는 압축과정에서 중복성이 제거되므로, 전송 시 무선채널과 같이 손실이 발생하기 쉬운 네트워크에서는 오류에 더욱 더 민감하다. 본 논문에서 제안하는 오류 은닉방법은 두 가지이다. 첫째는 기본계층의 움직임 벡터를 이용하여 이전 VOP로 은닉하는 방법이고, 두 번째는 오류가 발생한 영역을 움직임의 유무에 따라 움직임이 있는 부분은 기본계층의 같은 위치영역 정보로 은닉하고 움직임이 없는 부분은 이전 VOP의 같은 위치 영역 정보로 은닉하는 적응적인 방법이다. 본 논문에서는 제안하는 오류 은닉 방법을 계층 부호화된 비디오 데이터에 적용했을 때 매우 유용함을 입증한다. 실험 결과에서 무선네트워크 망의 상태에 따라 달라지는 에러 패턴과 영상의 특성에 따라, 기본계층의 정보를 참조하거나 이전 VOP 정보를 참조함으로써 좀 더 나은 은닉방법임을 보였다. 본 논문에서는 계층부호화에 MPEG-4를 사용하는데, 더 나아가 DCT를 근간으로 하는 모든 비디오 코덱에 응용할 수 있다.

은닉 마코프 모형을 이용한 한강유역 수문학적 가뭄의 확률론적 평가 (Probabilistic Assessment of Hydrological Drought Using Hidden Markov Model in Han River Basin)

  • 박예준;유지영;권현한;김태웅
    • 한국수자원학회논문집
    • /
    • 제47권5호
    • /
    • pp.435-446
    • /
    • 2014
  • 지금까지 많은 연구를 통하여 제안된 다양한 가뭄지수들은 사전에 정의된 등급을 통하여 가뭄을 평가하기 때문에 가뭄현상에 내재된 불확실성을 고려하지 못하고 있다. 본 연구에서는 월 유출량 자료에 내재되어 있는 불확실성을 고려하기 위해 은닉 마코프 모형(HMM) 기반의 가뭄지수(HMDI)를 제안하고, 이를 이용하여 수문학적 가뭄에 대한 확률론적 평가를 수행하였다. WAMIS에서 제공하는 한강유역의 평창강과 남한강상류의 월평균 유출량 자료(1966~2009)를 이용하여 3, 6, 12개월씩 누적시킨 후, HMM에 적용하여 은닉상태의 사후확률을 계산하였다. 연구방법의 검증을 위해 HMM을 이용하여 추정된 각 은닉상태 별 사후확률(HMDI)과 기준값에 의해 가뭄을 평가하는 방법 중 하나인 표준유출지수(SSI)와 비교를 하였다. 분석결과, 기존 가뭄지수(SSI)를 사용하였을 때는 하나의 지수로 특정 시점에서의 가뭄 상태를 판단하였지만, HMDI는 자료에내재된 불확실성을 이용하여 가뭄의 상태를 분류하였고, 이는 특정 시점에서 가뭄 상태들이 나타날 확률로 표현되었다. 또한, 실제 가뭄사례와의 비교를 통해서 HMDI가 SSI에 비하여 가뭄에 대한 재현능력이 우수한 것으로 나타났다.

상태의존 소스 양자화에 기반한 음성인식을 위한 은닉 마르코프 모델 파라미터의 견고한 추정 (Robust estimation of HMM parameters Based on the State-Dependent Source-Quantization for Speech Recognition)

  • 최환진;박재득
    • 한국음향학회지
    • /
    • 제17권1호
    • /
    • pp.66-75
    • /
    • 1998
  • 최근 음성인식을 위한 대표적인 방법으로써 은닉 마르코프 모델이 사용되고 있으며, 이러한 방법은 음성의 특성을 잘 표현하도록 하는 음향적인 모델링 방법에 따라서 성능이 좌우된다. 본 논문에서는 상태에서의 출력확률은 견고히 추정하기 위한 방법으로 상태에서 의 출력활률을 소스들의 분포와 그들의 빈도로 가중한 출력분포로 표시하는 상태 의존 소스 양자화 모델링 방법을 제안한다. 이 방법은 한 상태 내에서 특징 파라미터들이 유사한 특성 을 가지며, 그들의 변이가 다른 상태에 있는 특징 파라미터들에 비해서 작다는 사실에 기반 한다. 실험결과에 의하면, 제안된 방법이 기존의 baseline시스템보다 단어 인식율의 경우는 2.7%, 문장 인식율의 경우 3.6%의 향상을 보였다. 이러한 결과로부터 제안된 SDSQ-DHMM이 인식율 향상면에서 유효하며, HMM에 있어서 상태별 출력확률의 견고한 추정을 위한 대안으로 사용될 수 있을 것으로 판단된다.

  • PDF

유비쿼터스 홈 네트워크 시스템에서 은닉 마르코프 모델을 이용한 사용자 행동 상태 분석 및 예측 알고리즘 (Analysis and Prediction Algorithms on the State of User's Action Using the Hidden Markov Model in a Ubiquitous Home Network System)

  • 신동규;신동일;황구연;최진욱
    • 인터넷정보학회논문지
    • /
    • 제12권2호
    • /
    • pp.9-17
    • /
    • 2011
  • 본 논문은 유비쿼터스 홈 네트워크 시스템에서 저장된 사용자 행동 프로파일 데이터에 은닉 마르코프 모델에 적용하여 사용자의 행동 상태를 예측하는 알고리즘을 제안한다. 은닉 마르코프 모델은, 순차 데이터를 갖는 패턴을 인식하기 위해서 데이터에 내포되어 있는 시간성을 적절히 표현하고, 그것으로부터 원하는 정보를 추론할 수 있는 대표적인 모델이다. 제안 알고리즘에서는 "행동 인지 시스템(Activity Recognition System)"에 의하여 저장된 행동 발생 횟수, 행동 지속시간, 행동이 발생된 위치 데이터를 학습 데이터로 이용하였다. 사용자의 행동에 가중치를 부여하여 사용자의 행동에 대한 흥미를 객관적으로 수식화 하는 방법을 제안하였으며 은닉 마르코프 모델을 이용하여 시간에 따른 가중치 변화를 구하여 사용자의 행동 상태 변화를 예측하였다. 제안 알고리즘은 현실적인 유비쿼터스 홈 네트워크 구축에 도움을 준다.

웨이블릿 영역에서 훈련 없는 은닉 마코프 트리 모델을 이용한 영상 보간 (Image Interpolation Using Hidden Markov Tree Model Without Training in Wavelet Domain)

  • 우동헌;엄일규;김유신
    • 대한전자공학회논문지SP
    • /
    • 제41권4호
    • /
    • pp.31-37
    • /
    • 2004
  • 웨이블릿 변환은 영상을 분석하고 처리하는데 유용한 도구로써 영상 압축, 영상 잡음 제거 등의 분야에서 우수한 성능을 보여주었다. 웨이블릿 계수들은 은닉 마코프 트리(Hidden Markov Tree: HMT) 모델에 의해 효과적으로 모델링 될 수 있다. 그러나 영상 보간에서 은닉 마코프 트리 모델을 적용하기 위해서는 훈련 과정이 필요하며 훈련 과정에서 획득된 파라미터들이 입력 영상과 잘 맞지 않는 단점이 있다. 본 논문에서는 웨이블릿 영역에서 영상 보간을 위해 은닉 마코프 트리의 구조를 사용하되, 그 파라미터들은 훈련 과정 없이 부대역간의 통계적 특성을 이용하여 직접 추정한다. 제안 방법에서 웨이블릿 계수는 가우스 혼합 모델(Gauss Mixture Model: GMM)로 모델링 된다. 가우스 혼합 모델의 상태 천이 확률은 부대역간의 웨이블릿 계수의 통계적 천이 특성을 이용하여 결정하며, 각 상태의 분산은 웨이블릿 계수의 지수적 감소(exponential decay) 특성에 의해, 추정된다. 모의실험에서 제안 방법은 전통적인 bicubic 방법이나 훈련 과정을 필요로 하는 은닉 마코프 모델을 사용한 방법보다 여러 테스트 영상들에 대해서 개선된 성능을 보여주었다.