• Title/Summary/Keyword: 은닉상태

Search Result 109, Processing Time 0.027 seconds

Adaptive Image Watermark Embedding Using a Stationary GG Modeling within Multiresolution (다해상도를 갖는 정상상태 GG 모델을 이용한 적응 워터마크 은닉 기술)

  • 김현천;권기룡;김종진
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.05d
    • /
    • pp.886-889
    • /
    • 2002
  • 본 논문에서는 보다 강인한 워터마크의 은닉을 위하여 웨이브릿 변환영역에서 정상상태 일반화 가우스(generalized Gaussian) 모델을 이용한 적응 워터마크 은닉 기술을 제안한다. 워터마크는 고주파 영역에서 연속 부대역 양자화(successive subband quantization: SSQ)를 이용하여 다해상도 영상의 웨이브릿 계수 중에서 시각적 중요 계수(perceptually significant coefficients: PSC)에만 은닉한다. 워터마크를 은닉하기 위한 지각모델은 정상상태의 통계적 특성을 이용한다. 이것은 국부영상 특성을 갖는 NVF(noise visibility function) 함수에 의하여 계산되어진다. 은닉모델은 다해상도내의 각 서브밴드별 분산과 형상계수(shape parameter)를 사용한다. 여러 가지 공격 실험결과 우수한 비가시성과 강인성을 확인하였다.

  • PDF

Efficient Speech Enhancement based on left-right HMM with State Sequence Decision Using LRT (좌-우향 은닉 마코프 모델에서 상태결정을 이용한 음질향상)

  • 이기용
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.47-53
    • /
    • 2004
  • We propose a new speech enhancement algorithm based on left-right Hidden Markov Model (HMM) with state decision using Log-likelihood Ratio Test (LRT). Since the conventional HMM-based speech enhancement methods try to improve speech quality for all states, they introduce huge computational loads inappropriate to real-time implementation. In the left-right HMM, only the current and the next state are considered for a possible state transition so to reduce the computational complexity. In this paper, we propose a method to decide the current state by using the LRT on the previous state. Experimental results show that the proposed method improves the speed up to 60% with 0.2∼0.4 dB degradation of speech quality compared to the conventional method.

Content Adaptive Watermarking Using a Stochastic Image Modeling Based on Wavelet Transform Domain (웨이브릿 변환 영역에서 스토케스틱 영상 모델을 이용한 내용기반 적응 워터마킹)

  • 김현천;강균호;권기룡;김종진
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.11b
    • /
    • pp.283-286
    • /
    • 2002
  • 본 논문에서는 보다 효과적이고 강인한 워터마크 은닉을 위한 방법으로 웨이브릿 변환 영역에서 영상의 통계적 특성에 기초한 비정상상태(non-stationary)에서와 정상상태(stationary) 일반화 가우스(generalized Gaussian: GG)모델을 이용한 적응 워터마크 은닉 기술을 제안한다. 워터마크는 고주파 영역에서 연속 부대역 양자화(successive subband quantization: SSQ)를 이용하여 다해상도 영상의 웨이브릿 계수 중에서 시각적 중요 계수(perceptual significant coefficients: PSC)를 선택하여 삽입한다. 워터마크 은닉을 위한 지각 모델은 NVF(noise visibility function)함수에 의해 계산된다. 이것은 비정상상태와 정상상태의 통계적 특성을 이용하고, 국부영상 특성을 가진다. 은닉모델은 다해상도내의 각 부대역별 분산과 형상계수(shape parameter)를 사용한다. Stirmark benchmark test에 근거하여 여러 가능한 왜곡에 대한 실험에서 강인성과 비가시성에서의 우수함을 확인하였고, 비정상상태의 경우와 정상상태의 경우를 비교하였다.

  • PDF

Mixed distributions and Laten Process over Nonstationary Rainfall/Flood Frequency Estimates over South Korea: The Role of Large Scale Climate Pattern (혼합 분포와 은닉 과정 모의를 통한 비정상성 강우/빈도 빈도해석: 전지구 기상학적 변동성의 역할)

  • Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.8-8
    • /
    • 2018
  • 전통적인 빈도해석은 정상성 가정을 기초로 단일 확률분포를 강우 및 홍수량 자료에 적용하는 과정을 통해 확률수문량을 추정하는 것을 목적으로 하고 있다. 그러나 전지구적인 기상학적 변동성 및 기후변화로 기인하는 극치수문량의 발생 빈도 및 양적 크기의 변화는 확률통계학적 관점에서 서로 다른 분포특성을 가지게 된다. 대표적인 기상변동성인 엘니뇨가 발생하는 경우 지역에 따라 홍수 및 가뭄이 발생 발생하게 되며, 이러한 극치수문량은 일반적으로 나타나는 홍수 및 가뭄의 분포특성과는 상이한 경우가 많다. 즉, 2개 이상의 확률분포 특성이 혼재된 혼합분포의 특성을 가지는 경우가 나타내게 되며 이를 고려한 빈도해석 기법의 개발 및 적용이 필요하다. 혼합분포를 활용한 빈도해석에서 가장 중요한 사항 중에 하나는 개별 분포에 적용되는 가중치를 추정하는 것으로서 통계학적 관점에서 자료의 특성에 근거하여 내재되어 있는 은닉상태(latent process)를 추정하는 과정과 유사하다. 이와 더불어 앞서 언급된 기상학적 변동성을 빈도해석에 반영하기 위한 비정상성 해석기법의 개발 및 적용도 필요하다. 본 연구에서는 혼합분포를 활용한 비정상성빈도해석모형을 개발하는데 목적이 있으며 개별매개변수의 동적거동 뿐만 아니라 가중치에 대한 시간적인 종속성도 고려할 수 있는 모형으로 동적모형으로 다양한 실험적 해석이 가능하다. 본 연구에서는 개발된 모형을 기반으로 엘니뇨와 같은 기상변동성에 따른 강우 및 홍수빈도해석 측면에서 은닉상태에 변화, 이로 인한 확률분포의 특성 및 설계수문량의 동적변동성을 평가하고자 한다.

  • PDF

Gaussian Density Selection Method of CDHMM in Speaker Recognition (화자인식에서 연속밀도 은닉마코프모델의 혼합밀도 결정방법)

  • 서창우;이주헌;임재열;이기용
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.8
    • /
    • pp.711-716
    • /
    • 2003
  • This paper proposes the method to select the number of optimal mixtures in each state in Continuous Density HMM (Hidden Markov Models), Previously, researchers used the same number of mixture components in each state of HMM regardless spectral characteristic of speaker, To model each speaker as accurately as possible, we propose to use a different number of mixture components for each state, Selection of mixture components considered the probability value of mixture by each state that affects much parameter estimation of continuous density HMM, Also, we use PCA (principal component analysis) to reduce the correlation and obtain the system' stability when it is reduced the number of mixture components, We experiment it when the proposed method used average 10% small mixture components than the conventional HMM, When experiment result is only applied selection of mixture components, the proposed method could get the similar performance, When we used principal component analysis, the feature vector of the 16 order could get the performance decrease of average 0,35% and the 25 order performance improvement of average 0.65%.

Channel Condition Adaptive Error Concealment using Scalability Coding (채널상태에 적응적인 계층 부호화를 이용한 오류 은닉 방법 연구)

  • Han Seung-Gyun;Park Seung-Ho;Suh Doug-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.1B
    • /
    • pp.8-17
    • /
    • 2004
  • In this paper: we propose the adaptive error concealment technique for scalable video coding over wireless network error prove environment. We prove it is very effective that Error concealment techniques proposed in this paper are applied to scalable video data. In this paper, we propose two methods of error concealment. First one is that the en·or is concealed using the motion vector of base layer and previous VOP data. Second one is that according to existence of motion vector in error position, the error is concealed using the same position data of base layer when the motion vector is existing otherwise using the same position data of previous VOP when the motion vector is 0(zero) adaptively. We show that according to various error pattern caused by condition of wireless network and characteristics of sequence, we refer decoder to base layer data or previous enhancement layer data to effective error concealment. Using scalable coding of MPEG-4 In this paper, this error concealment techniques are available to be used every codec based on DCT.

Probabilistic Assessment of Hydrological Drought Using Hidden Markov Model in Han River Basin (은닉 마코프 모형을 이용한 한강유역 수문학적 가뭄의 확률론적 평가)

  • Park, Yei Jun;Yoo, Ji Young;Kwon, Hyun-Han;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.5
    • /
    • pp.435-446
    • /
    • 2014
  • Various drought indices developed from previous studies can not consider the inherent uncertainty of drought because they assess droughts using a pre-defined threshold. In this study, to consider inherent uncertainty embedded in monthly streamflow data, Hidden Markov Model (HMM) based drought index (HMDI) was proposed and then probabilistic assessment of hydrologic drought was performed using HMDI instead of using pre-defined threshold. Using monthly streamflow data (1966~2009) of Pyeongchang river and Upper Namhan river provided by Water Management Information System (WAMIS), applying the HMM after moving-averaging the data with 3, 6, 12 month windows, this study calculated the posterior probability of hidden state that becomes the HMDI. For verifying the method, this study compared the HMDI and Standardized Streamflow Index (SSI) which is one of drought indices using a pre-defined threshold. When using the SSI, only one value can be used as a criterion to determine the drought severity. However, the HMDI can classify the drought condition considering inherent uncertainty in observations and show the probability of each drought condition at a particular point in time. In addition, the comparison results based on actual drought events occurred near the basin indicated that the HMDI outperformed the SSI to represent the drought events.

Robust estimation of HMM parameters Based on the State-Dependent Source-Quantization for Speech Recognition (상태의존 소스 양자화에 기반한 음성인식을 위한 은닉 마르코프 모델 파라미터의 견고한 추정)

  • 최환진;박재득
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.66-75
    • /
    • 1998
  • 최근 음성인식을 위한 대표적인 방법으로써 은닉 마르코프 모델이 사용되고 있으며, 이러한 방법은 음성의 특성을 잘 표현하도록 하는 음향적인 모델링 방법에 따라서 성능이 좌우된다. 본 논문에서는 상태에서의 출력확률은 견고히 추정하기 위한 방법으로 상태에서 의 출력활률을 소스들의 분포와 그들의 빈도로 가중한 출력분포로 표시하는 상태 의존 소스 양자화 모델링 방법을 제안한다. 이 방법은 한 상태 내에서 특징 파라미터들이 유사한 특성 을 가지며, 그들의 변이가 다른 상태에 있는 특징 파라미터들에 비해서 작다는 사실에 기반 한다. 실험결과에 의하면, 제안된 방법이 기존의 baseline시스템보다 단어 인식율의 경우는 2.7%, 문장 인식율의 경우 3.6%의 향상을 보였다. 이러한 결과로부터 제안된 SDSQ-DHMM이 인식율 향상면에서 유효하며, HMM에 있어서 상태별 출력확률의 견고한 추정을 위한 대안으로 사용될 수 있을 것으로 판단된다.

  • PDF

Analysis and Prediction Algorithms on the State of User's Action Using the Hidden Markov Model in a Ubiquitous Home Network System (유비쿼터스 홈 네트워크 시스템에서 은닉 마르코프 모델을 이용한 사용자 행동 상태 분석 및 예측 알고리즘)

  • Shin, Dong-Kyoo;Shin, Dong-Il;Hwang, Gu-Youn;Choi, Jin-Wook
    • Journal of Internet Computing and Services
    • /
    • v.12 no.2
    • /
    • pp.9-17
    • /
    • 2011
  • This paper proposes an algorithm that predicts the state of user's next actions, exploiting the HMM (Hidden Markov Model) on user profile data stored in the ubiquitous home network. The HMM, recognizes patterns of sequential data, adequately represents the temporal property implicated in the data, and is a typical model that can infer information from the sequential data. The proposed algorithm uses the number of the user's action performed, the location and duration of the actions saved by "Activity Recognition System" as training data. An objective formulation for the user's interest in his action is proposed by giving weight on his action, and change on the state of his next action is predicted by obtaining the change on the weight according to the flow of time using the HMM. The proposed algorithm, helps constructing realistic ubiquitous home networks.

Image Interpolation Using Hidden Markov Tree Model Without Training in Wavelet Domain (웨이블릿 영역에서 훈련 없는 은닉 마코프 트리 모델을 이용한 영상 보간)

  • 우동헌;엄일규;김유신
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.4
    • /
    • pp.31-37
    • /
    • 2004
  • Wavelet transform is a useful tool for analysis and process of image. This showed good performance in image compression and noise reduction. Wavelet coefficients can be effectively modeled by hidden Markov tree(HMT) model. However, in application of HMT model to image interpolation, training procedure is needed. Moreover, the parameters obtained from training procedure do not match input image well. In this paper, the structure of HMT is used for image interpolation, and the parameters of HMT are obtained from statistical characteristics across wavelet subbands without training procedure. In the proposed method, wavelet coefficient is modeled as Gaussian mixture model(GMM). In GMM, state transition probabilities are determined from statistical transition characteristic of coefficient across subbands, and the variance of each state is estimated using the property of exponential decay of wavelet coefficient. In simulation, the proposed method shows improvement of performance compared with conventional bicubic method and the method using HMT model with training.