• Title/Summary/Keyword: 융합 유전자

Search Result 275, Processing Time 0.021 seconds

Characterization of an Isolate of Cucumber mosaic virus Isolated from Canna generalis Bailey (칸나에서 분리한 Cucumber mosaic virus의 특성)

  • Jeon, Yong-Woon;Hong, Jin-Sung;Lee, Sang-Yong;Ryu, Ki-Hyun;Choi, Jang-Kyung
    • Research in Plant Disease
    • /
    • v.12 no.3
    • /
    • pp.298-302
    • /
    • 2006
  • An isolate of Cucumber mosaic virus(CMV), called as Can-CMV, was originally isolated from Canna generalis showing typical streak mosaic foliar symptoms, and its properties were investigated in this study. Whereas all known isolates of CMV could induce symptoms on their systemic hosts(four kinds of Nicotiana spp and a zucchini squash), Can-CMV induced no symptoms on its systemic hosts tested. Replication and movement of the virus on upper leaves as well as inoculated leaves-were confirmed by RT-PCR suggesting that Can-CMV could only infect systemically on N. benthamiana and N. glutinosa. Size of local lesions on the Can-CMV-inoculated leaves of Chenopodium amaranticolor was much smaller than that of Fny-CMV. Whereas Fny-CMV and LS-CMV could induce distinct necrotic local lesions on Vigna unguiculata 2 to 3 days postinoculation(dpi), chlorotic spots symptom was expressed by Can-CMV 4 to 5 dpi. Virus-specific 4 kinds of dsRNAs were isolated from leaves of N. benthamiana infected with Can-CMV, and these dsRNAs corresponded to the viral genomic RNAs and subgenomic RNAs and their patterns were indistinguishable to those of Fny-CMV and LS-CMV. By restriction mapping analysis of 950 bp of RT-PCR amplified products of coat protein gene of the virus as well as by serological analysis of gel diffusion test, Can-CMV belongs to a typical member of CMV subgroup IA. These results suggest that the Can-CMV isolated from C. generalis possesses unique pathological properties to understand further insight into the various interactions between virus and host.

Identification and Characterization of Three Isolates of Cucumber mosaic virus Isolated from Weed Hosts (잡초에서 분리한 3종 Cucumber mosaic virus의 동정과 특성)

  • Lee, Hyeok-Geun;Kim, Sung-Ryul;Jeon, Yong-Woon;Kwon, Soon-Bae;Ryu, Ki-Hyun;Choi, Jang-Kyung
    • Research in Plant Disease
    • /
    • v.14 no.1
    • /
    • pp.15-20
    • /
    • 2008
  • Three isolates of Cucumber mosaic virus (CMV) were isolated from weed hosts showing typical mosaic symptoms, and some properties of the viruses were investigated. CMV isolates, designated as Is-CMV, Jd-CMV and Pla-CMV from Isodon inflexus, Jeffersonia dubia and Phryma leptostachya var. asiatica, respectively, were identified and characterized by biological reaction in several host plants, serological property, dsRNA analysis, reverse transcription-polymerase chain reaction (RT-PCR), restriction fragment-length polymorphism (RFLP). All isolates systemically infected in Nicotiana benthamiana, Cucurbita pepo cv. Black beauty and Cucumis sativus, and did not reveal any differences in these host plants between the isolates. However, remarkable difference in the symptoms was found between the CMVs in Capsicum annuum. Is-CMV induced an asymptomatic symptoms, while Jd-CMV and Pla-CMV produced severe mosaic symptoms in C. annuum plants. In dsRNA analysis, all isolates revealed four major bands with estimated molecular size of 3.4, 3.2, 2.1 and 1.0 kbp. The cDNAs of coat protein gene of the isolates were amplified by RT-PCR using a genus-specific single pair primers that designed to amplify a DNA fragment of approximately ranging from 938 to 966 bp. By restriction mapping analysis using RFLP of the RT-PCR products as well as by serological properties of gel diffusion test, the CMV isolates belong to a typical members of CMV subgroup IA. This is the first report on the occurrence of CMV in the three weed hosts.

Autopoietic Machinery and the Emergence of Third-Order Cybernetics (자기생산 기계 시스템과 3차 사이버네틱스의 등장)

  • Lee, Sungbum
    • Cross-Cultural Studies
    • /
    • v.52
    • /
    • pp.277-312
    • /
    • 2018
  • First-order cybernetics during the 1940s and 1950s aimed for control of an observed system, while second-order cybernetics during the mid-1970s aspired to address the mechanism of an observing system. The former pursues an objective, subjectless, approach to a system, whereas the latter prefers a subjective, personal approach to a system. Second-order observation must be noted since a human observer is a living system that has its unique cognition. Maturana and Varela place the autopoiesis of this biological system at the core of second-order cybernetics. They contend that an autpoietic system maintains, transforms and produces itself. Technoscientific recreation of biological autopoiesis opens up to a new step in cybernetics: what I describe as third-order cybernetics. The formation of technoscientific autopoiesis overlaps with the Fourth Industrial Revolution or what Erik Brynjolfsson and Andrew McAfee call the Second Machine Age. It leads to a radical shift from human centrism to posthumanity whereby humanity is mechanized, and machinery is biologized. In two versions of the novel Demon Seed, American novelist Dean Koontz explores the significance of technoscientific autopoiesis. The 1973 version dramatizes two kinds of observers: the technophobic human observer and the technology-friendly machine observer Proteus. As the story concludes, the former dominates the latter with the result that an anthropocentric position still works. The 1997 version, however, reveals the victory of the techno-friendly narrator Proteus over the anthropocentric narrator. Losing his narrational position, the technophobic human narrator of the story disappears. In the 1997 version, Proteus becomes the subject of desire in luring divorcee Susan. He longs to flaunt his male egomaniac. His achievement of male identity is a sign of technological autopoiesis characteristic of third-order cybernetics. To display self-producing capabilities integral to the autonomy of machinery, Koontz's novel demonstrates that Proteus manipulates Susan's egg to produce a human-machine mixture. Koontz's demon child, problematically enough, implicates the future of eugenics in an era of technological autopoiesis. Proteus creates a crossbreed of humanity and machinery to engineer a perfect body and mind. He fixes incurable or intractable diseases through genetic modifications. Proteus transfers a vast amount of digital information to his offspring's brain, which enables the demon child to achieve state-of-the-art intelligence. His technological editing of human genes and consciousness leads to digital standardization through unanimous spread of the best qualities of humanity. He gathers distinguished human genes and mental status much like collecting luxury brands. Accordingly, Proteus's child-making project ultimately moves towards technologically-controlled eugenics. Pointedly, it disturbs the classical ideal of liberal humanism celebrating a human being as the master of his or her nature.

Development of Dermal Transduction Epidermal Growth Factor (EGF) Using A Skin Penetrating Functional Peptide (피부투과 기능성 펩타이드를 이용한 경피투과성 상피세포성장인자의 개발)

  • Kang, Jin Sun;La, Ha Na;Bak, Sun Uk;Eom, Hyo Jung;Lee, Byung Kyu;Shin, Hee Je
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.45 no.2
    • /
    • pp.175-184
    • /
    • 2019
  • The epidermal growth factor (EGF) has a intrinsic function of inducing growth and proliferation of cells through interacting with cell membrane receptors in human epidermis and dermis layer. These functions of EGF are used as a main ingredient for wound healing medicines and anti-aging cosmetics. As a cosmetic ingredient, the EGF has a problem in exhibiting its natural efficacy due to the lack of the ability to penetrate through the stratum corneum, which is known as the skin barrier. In this study, a recombinant human epidermal growth factor ($MTD_{151}-EGF$) fused with the macromolecule transduction domain $(MTD)_{151}$ with the skin penetration ability was developed to improve the skin penetration efficiency of the EGF. Expression of $MTD_{151}-EGF$ was performed in E. coli transformed with a vector encoding the $MTD_{151}-EGF$ gene and then purified. The purified $MTD_{151}-EGF$ was evaluated using cell proliferation assay, cytotoxicity test and skin penetration test by franz diffusion cell assay and artificial skin. Cell proliferation activity of $MTD_{151}-EGF$ purified to high purity of 99% or above was equivalent to the EGF or better, and cytotoxicity was not observed. In addition, the $MTD_{151}-EGF$ showed an excellent penetration efficiency compared to the EGF in the skin penetration test with EGF and $MTD_{151}-EGF$ labeled by FITC in an artificial skin penetration model. Based on the quantitative analysis of the penetrating substance using franz diffusion cell assay, the amount of penetration was about 16 times more than that of EGF. These results can be regarded as an effective alternative to improve the existing physical transdermal penetration method related to the use of various active ingredients for cosmetics.

Development of a Molecular Selection Marker for Bacillus licheniformis K12 (Bacillus licheniformis K12 균주 분자 선발 마커 개발)

  • Young Jin Kim;Sam Woong Kim;Tae Wok Lee;Won-Jae Chi;Woo Young Bang;Ki Hwan Moon;Tae Wan Kim;Kyu Ho Bang;Sang Wan Gal
    • Journal of Life Science
    • /
    • v.33 no.10
    • /
    • pp.808-819
    • /
    • 2023
  • This study was conducted to develop a selection marker for the identification of the Bacillus licheniformis K12 strain in microbial communities. The strain not only demonstrates good growth at moderate temperatures but also contains enzymes that catalyze the decomposition of various polymer materials, such as proteases, amylases, cellulases, lipases, and xylanases. To identify molecular markers appropriate for use in a microbial community, a search was conducted to identify variable gene regions that show considerable genetic mutations, such as recombinase, integration, and transposase sites, as well as phase-related genes. As a result, five areas were identified that have potential as selection markers. The candidate markers were two recombinase sites (BLK1 and BLK2), two integration sites (BLK3 and BLK4), and one phase-related site (BLK5). A PCR analysis performed with different Bacillus species (e.g., B. licheniformis, Bacillus velezensis, Bacillus subtilis, and Bacillus cereus) confirmed that PCR products appeared at specific locations in B. licheniformis: BLK1 in recombinase, BLK2 in recombinase family protein, and BLK3 and BLK4 as site-specific integrations. In addition, BLK1 and BLK3 were identified as good candidate markers via a PCR analysis performed on subspecies of standard B. licheniformis strains. Therefore, the findings suggest that BLK1 can be used as a selection marker for B. licheniformis species and subspecies in the microbiome.