• Title/Summary/Keyword: 윤형섭

Search Result 105, Processing Time 0.026 seconds

Effect of the Temperature Change on the Cone Tip Resistance (지중의 온도변화가 콘 선단저항력에 미치는 영향)

  • Kim, Rae-Hyun;Lee, Woo-Jin;Yoon, Hyung-Koo;Lee, Jong-Sub
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.361-367
    • /
    • 2009
  • The criteria such as ASTM recommends that the zero reading process of CPT must be performed in the same temperature condition with underground in order to reduce the effect of temperature. However, this method can not consider the change of temperature occurred during penetration. In this study, ultra small size temperature sensor with 0.5mm in diameter is manufactured to estimate and compensate the effect of temperature by using FBG sensor. The continuous temperature changes are monitored during cone penetration by using FBG temperature sensor installed in cone penetrometer. The temperature compensated tip resistances show the uniform and similar distributions with depth in different with originally measured tip resistance in cohesive soil. This study verifies that the tip resistances measured by previous zero reading method are affected by the change of underground temperature, and suggests the new temperature compensation technique using by FBG temperature sensor.

  • PDF

Detection of thin-layered soil using CRPT in soft soil (CRPT를 이용한 연약지반 협재층 탐지)

  • Yoon, Hyung-Koo;Kim, Joon-Han;Kim, Rae-Hyun;Choi, Yong-Kyu;Lee, Jong-Sub
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.117-125
    • /
    • 2008
  • The detection of thin-layered soil is important in soft soils to evaluate the soil behavior. The smaller diameter cone penetrometer have been commonly used to detect the layer with increasing sensitivity. The objective of this study is to detect the thin-layered soil using cone resistance and electrical resistance. The cone resistivity penetration test (CRPT) is developed to evaluate the cone tip resistance and electrical resistance at the tip. The CRPT is a micro-cone which has a $0.78cm^2$ in projected area. The application test is conducted in a laboratory large-scale consolidometer (calibration chamber). The kaolinite, sand and water are mixed to make the specimen at the liquid limit of 46% using a slurry mixer. It takes two months for the consolidation of the specimen. After consolidation, the CRPT test is carried out. Furthermore the standard CPT results are compared with the electrical resistance measured at the tip in the field. This study suggests that the CRPT may be a useful tool for detecting thin-layers in soft soils.

  • PDF

ETRI 0.25μm GaN MMIC Process and X-Band Power Amplifier MMIC (ETRI 0.25μm GaN MMIC 공정 및 X-대역 전력증폭기 MMIC)

  • Lee, Sang-Heung;Kim, Seong-Il;Ahn, Ho-Kyun;Lee, Jong-Min;Kang, Dong-Min;Kim, Dong Yung;Kim, Haecheon;Min, Byoung-Gue;Yoon, Hyung Sup;Cho, Kyu Jun;Jang, Yoo Jin;Lee, Ki Jun;Lim, Jong-Won
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • In this paper, ETRI's $0.25{\mu}m$ GaN MMIC process is introduced and the fabricated results of X-Band 3 W power amplifier MMIC are discussed. The one-stage X-Band 3 W power amplifier MMIC using the $0.25{\mu}m$ GaN MMIC devices has been designed and fabricated. From the fabricated GaN MMIC, the characteristics of the $0.25{\mu}m$ GaN MMIC process and devices are evaluated and analyzed. The X-band power amplifier MMIC shows output power of 3.5 W, gain of 10 dB, and power-added efficiency of 35 %.

Characteristics of MHEMT Devices Having T-Shaped Gate Structure for W-Band MMIC (W-Band MMIC를 위한 T-형태 게이트 구조를 갖는 MHMET 소자 특성)

  • Lee, Jong-Min;Min, Byoung-Gue;Chang, Sung-Jae;Chang, Woo-Jin;Yoon, Hyung Sup;Jung, Hyun-Wook;Kim, Seong-Il;Kang, Dong Min;Kim, Wansik;Jung, Jooyong;Kim, Jongpil;Seo, Mihui;Kim, Sosu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.2
    • /
    • pp.99-104
    • /
    • 2020
  • In this study, we fabricated a metamorphic high-electron-mobility transistor (mHEMT) device with a T-type gate structure for the implementation of W-band monolithic microwave integrated circuits (MMICs) and investigated its characteristics. To fabricate the mHEMT device, a recess process for etching of its Schottky layer was applied before gate metal deposition, and an e-beam lithography using a triple photoresist film for the T-gate structure was employed. We measured DC and RF characteristics of the fabricated device to verify the characteristics that can be used in W-band MMIC design. The mHEMT device exhibited DC characteristics such as a drain current density of 747 mA/mm, maximum transconductance of 1.354 S/mm, and pinch-off voltage of -0.42 V. Concerning the frequency characteristics, the device showed a cutoff frequency of 215 GHz and maximum oscillation frequency of 260 GHz, which provide sufficient performance for W-band MMIC design and fabrication. In addition, active and passive modeling was performed and its accuracy was evaluated by comparing the measured results. The developed mHEMT and device models could be used for the fabrication of W-band MMICs.

0.25 μm AlGaN/GaN HEMT Devices and 9 GHz Power Amplifier (0.25 μm AlGaN/GaN HEMT 소자 및 9 GHz 대역 전력증폭기)

  • Kang, Dong-Min;Min, Byoung-Gue;Lee, Jong-Min;Yoon, Hyung-Sup;Kim, Sung-Il;Ahn, Ho-Kyun;Kim, Dong-Young;Kim, Hae-Cheon;Lim, Jong-Won;Nam, Eun-Soo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.1
    • /
    • pp.76-79
    • /
    • 2016
  • This paper describes the successful development and the performance of X-band 50 W pulsed power amplifier using a 50 W GaN-on-SiC high electron mobility transistor. The GaN HEMT with a gate length of $0.25{\mu}m$ and a total gate width of 12 mm were fabricated. The X-band pulsed power amplifier exhibited an output power of 50 W with a power gain of 6 dB in a frequency range of 9.2~9.5 GHz. It also shows a maximum output power density of 4.16 W/mm. This 50 W GaN HEMT and X-band 50 W pulsed power amplifier are suitable for the radar systems and related applications in X-band.

DC and RF Characteristics of 100-nm mHEMT Devices Fabricated with a Two-Step Gate Recess (2단계 게이트 리세스 방법으로 제작한 100 nm mHEMT 소자의 DC 및 RF 특성)

  • Yoon, Hyung Sup;Min, Byoung-Gue;Chang, Sung-Jae;Jung, Hyun-Wook;Lee, Jong Min;Kim, Seong-Il;Chang, Woo-Jin;Kang, Dong Min;Lim, Jong Won;Kim, Wansik;Jung, Jooyong;Kim, Jongpil;Seo, Mihui;Kim, Sosu
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.4
    • /
    • pp.282-285
    • /
    • 2019
  • A 100-nm gate-length metamorphic high electron mobility transistor(mHEMT) with a T-shaped gate was fabricated using a two-step gate recess and characterized for DC and microwave performance. The mHEMT device exhibited DC output characteristics having drain current($I_{dss}$), an extrinsic transconductance($g_m$) of 1,090 mS/mm and a threshold voltage($V_{th}$) of -0.65 V. The $f_T$ and $f_{max}$ obtained for the 100-nm mHEMT device were 190 and 260 GHz, respectively. The developed mHEMT will be applied in fabricating W-band monolithic microwave integrated circuits(MMICs).

Railbed Evaluation by using In-situ Penetration Test (원위치 관입실험기를 활용한 철도 노반 평가)

  • Kim, Ju-Han;Park, Jung-Hee;Yoon, Hyung-Koo;Koh, Tae-Hoon;Lee, Jong-Sub
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.261-267
    • /
    • 2011
  • The test fit has commonly used for the evaluation of the railbed condition, and indirect methods by using the compressional wave are also studied. the direct evaluation method by penetration test has not been studied. For the measurement of in-situ cone tip resistance of the railbed with minimizing the disturbance of the upper railbed. the cone penetrometer with the helical type outer rod(CPH) was developed. The outer rod, which has helical screw, is penetrated through the gravel layer and provides the reaction force for cone penetration testing. the cone tip resistances are measured by the mini cone penetrometer, where diameter is 15mm. For the developing the mini cone, strain gauge installation, circuit configuration, penetration rates and calibration process are considered. For the easy penetration of the screw rod in the field, the reaction force stepping plate and guide column are arranged. The screw rod are penetrated through the gravel layer. And the mini cone was pushed into the subgrade railbed at the penetration rate of 1mm/sec. The penetration test shows that the cone tip resistance increases along the depth. In addition, the subgrade condition is evaluated. This study demonstrates that the CPH may be effectively used for the evaluation of subgrade method any damage of the gravel layer.

  • PDF

A Case of Chronic Arthritis Due to Mycobacterium intracellulare after Trauma (외상 후 발생한 Mycobacterium intracellulare에 의한 만성 관절염 1예)

  • Kim, Jae-Gyung;Kim, Dae-Won;Cho, Yul-Hee;Yim, Sun-Mie;Kang, Ju-Hyun;Joo, Young-Bin;Kang, Hyeon-Hui;Song, Jeong-Sup;Yoon, Hyoung-Kyu
    • Tuberculosis and Respiratory Diseases
    • /
    • v.72 no.2
    • /
    • pp.191-196
    • /
    • 2012
  • While nontuberculous mycobacterium (NTM) infections are recently on the rise, arthritis caused by NTM is hardly reported in Korea. NTM arthritis has no distinctive clinical characteristics from chronic arthritis. Tuberculosis of the joint specifically produces similar clinical and pathologic presentations to NTM arthritis, so it is not easy to distinguish between them. We report a case of Mycobacterium intracellulare in an arthritis patient after trauma and surgical repair of the injury. At the beginning, the patient was diagnosed as tuberculous tenosynovitis through pathology without microbiologic evidence. The final diagnosis was made after subsequent recurrences for several years. The misdiagnosis and delayed diagnosis led to irreversible joint destruction and functional impairment. NTM infection must be included in the differential diagnosis of chronic arthritis at the outset.

Estimation of Consolidation in Soft Clay by Field Velocity Probe (Field Velocity Probe를 활용한 연약지반 압밀 평가)

  • Lee, Jong-Sub;Kim, Youngseok;Hong, Seungseo;Yoon, Hyung-Koo
    • The Journal of Engineering Geology
    • /
    • v.23 no.4
    • /
    • pp.511-517
    • /
    • 2013
  • The Field Velocity Probe (FVP) has been widely applied to determine the various characteristics of soils. This study seeks to estimate soil consolidation characteristics using an FVP and to increase its application in the field. The specimens were extracted from depths of 3 and 6 m at the study site, an area of soft clay in Incheon. In laboratory testing, the specimens were placed in an improved oedometer cell to measure shear wave velocity, and statistical analysis was performed to compare the results of effective stress and shear wave velocity. FVP enables increased resolution in the field because it measures the shear wave velocity every 20 cm. To estimate the condition of consolidation, we compared the results of shear wave velocities between those obtained in the laboratory and those in the field. The field conditions are used to analyze overconsolidated and normally consolidated soils at depths of 3 and 6 m, respectively. The results show that FVP is a suitable method for estimating the degree of consolidation.

Characterization of Shear Waves in Busan New Port Clay: Estimation of the Coefficients of Shear Wave Velocity (부산 신항 점토의 전단파 특성 연구: 전단파 속도 계수 추정 사례)

  • Lee, Jong-Sub;Kim, Youngseok;Hong, Seungseo;Yoon, Hyung-Koo
    • The Journal of Engineering Geology
    • /
    • v.23 no.4
    • /
    • pp.503-510
    • /
    • 2013
  • Shear wave velocity is widely used as an parameter for investigating subsurface characteristics and for obtaining the design parameters based on theoretical equations. This study seeks to estimate the coefficient of shear wave velocity in Busan clay via laboratory tests. Eight specimens were extracted at depths of 10, 12, 15, 20, 22, 25, 30, and 31 m. The specimens were subjected to the consolidation test to determine the relationship between effective stress and shear wave velocity. The relationship shows a non-linear trend and is similar to the results of a previous study. The coefficient shows constant coverage and a relationship between ${\alpha}$ and ${\beta}$ is suggested. The results demonstrate that this coefficient could be used as a reference value to determine engineering parameters based on the shear wave velocity.