• 제목/요약/키워드: 윤축

검색결과 40건 처리시간 0.023초

윤축에 로드셀을 설치하기 위한 하중간의 연성 해석 (Analysis of Coupling Term Between Vertical Load and Lateral Load for Install Load Cell to Wheel-set)

  • 함영삼;서정원;김승록;홍재성
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.41-42
    • /
    • 2006
  • The important factor to evaluate the running safety of a railway vehicle would be the interaction force between wheel and rail(derailment coefficient), for which is one of important factors to check the running safety of a railway vehicle that may cause a tragic accident. In this paper, analysis of coupling term between vertical load and lateral load for install load cell to wheel-set. This result is going to be utilized in formality that verify running safety of tilting vehicles.

  • PDF

윤축을 적용한 좌·우 주관절 신전 동작의 운동역학적 비교 연구 (Comparative Study of Biomechanical Left and Right Elbow Joint Extension Movements After Wheel Axle Application)

  • 김성주
    • 한국운동역학회지
    • /
    • 제21권4호
    • /
    • pp.429-436
    • /
    • 2011
  • In this study, we have experimented with 9 players at the national delegate level. Although there were some differences in the average effects of 3 types of one-two straight movements after the application of wheel axle, there were no statistical differences in the case of surface reacting forces, electromyograms, and impact forces. When the right fist was impacted using the one-two straight movements and the wheel axle was applied with 3 segmentations, high impact forces were obtained for the pronation in the following order-72.01 $m/s^2$ (type 2), 70.93 $m/s^2$ (type 3), and 58.19 $m/s^2$ (type 1). Higher values of the surface reacting force were found for type 1 that did not exhibit pronation in the left foot, whereas in the case of the vertical direction of the right foot, type 2 with pronation exhibited higher values and impact forces. In the right electromyogram, high impact forces due to the activation of the muscular electric potential were obtained for lumbar erector (LE) spinae and triceps brachii (TB) with type 1; LE spina, latissimus dosi (LD), and upper trapezius (UT) with type 2; and brachioradialis (BR), UT, and rectus abdominal (RA) with type 3. Due to pronation and complex motions of the 3 pronation segmentations, the efficiency was higher for impacts due to one-two straight movements.

차륜-레일 구름접촉을 적용한 철도차량 유한요소 모델의 충돌 기인 탈선거동 해석 (Collision-induced Derailment Analysis of a Finite Element Model of Rolling Stock Applying Rolling Contacts for Wheel-rail Interaction)

  • 이준호;구정서
    • 한국자동차공학회논문집
    • /
    • 제21권3호
    • /
    • pp.1-14
    • /
    • 2013
  • In this paper, a finite element analysis technique of rolling stock models for collision-induced derailments was suggested using rolling contacts for wheel-rail interaction. The collision-induced derailments of rolling stock can be categorized into two patterns of wheel-climb and wheel-lift according to the friction direction between wheel flange and rail. The wheel-climb derailment types are classified as Climb-up, Climb/roll-over and Roll-over-C types, and the wheel-lift derailment types as Slip-up, Slip/roll-over and Roll-over-L types. To verify the rolling contact simulations for wheel-rail interaction, dynamic simulations of a single wheelset using Recurdyn of Functionbay and Ls-Dyna of LSTC were performed and compared for the 6-typical derailments. The collision-induced derailment simulation of the finite element model of KHST (Korean High Speed Train) was conducted and verified using the theoretical predictions of a simplified wheel-set model proposed for each derailment type.

전동차 상하진동에 대한 현가장치 설계변수의 영향 (Effects of the Design Parameters of Suspension Systems on the Bounce of Electric Trains)

  • 박기수;최연선
    • 한국철도학회논문집
    • /
    • 제11권1호
    • /
    • pp.39-44
    • /
    • 2008
  • 본 연구에서는 실측 주행시험 결과데이터를 바탕으로 윤축 진동과 설계변수간의 관계를 규명하고자 2 자유도계 모델을 구성하였다. 특히 2차 현가장치인 공기스프링의 점탄성 특성을 반영하기 위해 니시무라 공기스프링 모델을 적용하였다. 수치해석 결과 내부 압력 감소 및 보조 공기탱크 체적 증가 시 객차 가속도응답이 감소하는 것을 확인할 수 있었다. 이에 안정성을 헤치지 않는 범위 내에서 현가장치의 강성을 조정해 볼 필요가 있음을 알았다.

한국형고속열차의 동력전달축 부하측정 (Torque Measurement of Tripod Shaft for HSR-350x)

  • 김상수;김영국;김기환;박춘수
    • 한국철도학회논문집
    • /
    • 제10권6호
    • /
    • pp.660-664
    • /
    • 2007
  • 고속철도차량은 견인력 및 제동력을 전달하기 위하여 한 편성당 12개의 전동기를 동력차 및 동력객차에 설치하고 있다. 각각의 전동기는 회전력을 트리포드 축을 통하여 윤축에 전달한다. 본 연구에서는 한국형고속열차 트리포드 축에 회전력을 직접 측정할 수 있는 시스템을 구축하여 본선 주행시 토크를 측정하고, 그 결과를 검토하고자 한다.

철도차량 제동 HILS 시스템의 개선된 윤축속력 구현 (Improved Wheelset Speed Implementation of a Brake HILS System for a Railway Vehicle)

  • 이동찬;강철구
    • 제어로봇시스템학회논문지
    • /
    • 제21권9호
    • /
    • pp.881-887
    • /
    • 2015
  • The hardware-in-the-loop simulation (HILS) of a railway vehicle is crucial for overcoming the limitation of field tests of a railway vehicle. A brake HILS system for a railway vehicle was previously not able to test the performance of a speed-sensing system of a railway vehicle, since wheelset speeds were generated only by computer simulations. In this paper, we present a novel wheelset speed implementation of a brake HILS system for a railway vehicle. Four wheelset speeds of a brake HILS system for a car of a railway vehicle are implemented using four small-sized servomotors, whereas the speed sensors and pole wheels used in the brake HILS system are the actual ones of the railway vehicle. According to the simulated speeds of four wheelsets in the dynamic equations of motion, four servomotors generate wheel speeds in real time, and then the measured wheelset speeds are fed back to the computer simulation model. Moreover, in this paper, we improve the performance of wheelset speed measurement via the T method instead of the M method presently used in the field. The performances of wheelset speed implementation and speed-sensor operation are demonstrated by experimental works using a HILS system.

곡선부 주행안전성 향상을 위한 윤축 조향 제어 (Wheelset Steering Control for Improvement a Running Safety on Curved Track)

  • 허현무;안다훈;김남포;심경석;박태원
    • 한국정밀공학회지
    • /
    • 제31권9호
    • /
    • pp.759-764
    • /
    • 2014
  • Lateral force of wheel is important parameter when we evaluate the safety of a railway vehicle on curved track. The lateral force of wheel is influenced by the steering performance of wheelsets. Generally, in passive type vehicles, the steering performance of wheelsets is influenced by the parameters like primary spring stiffness, wheel base, conicity of the wheel profile, etc. But, the steering performance of passive type vehicle has its limit. To overcome the limit of the steering performance of passive type vehicle, active steering technology is being developed. In this paper, we analyze the lateral force of wheel and the safety of the railway vehicle on curved track by adopting the active steering technology. As results of dynamic analysis for vehicle model equipped with active steering system, the lateral force of wheel is reduced and the safety is improved remarkably.

철도차량 1차현가 특성에 따른 윤축 조향각 성능 분석 (Wheelset Steering Angle of Railway Vehicle according to Primary Suspension Property)

  • 허현무;안다훈;박준혁
    • 한국정밀공학회지
    • /
    • 제32권7호
    • /
    • pp.597-602
    • /
    • 2015
  • In this paper, we studied the steering performance of wheelset with primary suspension characteristics of railway vehicle. We carry out dynamic analysis and experimental study for the vehicle models which are different primary suspension characteristics. The steering angle of a vehicle model (Case 1) operating in domestic subway lines is insufficient compared with an objective steering angle for curved track. And the steering angle of a vehicle model (Case 2) with improved self-steering performance of wheelset is a little improved compare to previous vehicle model. But also Case 2 model is still insufficient compared with an objective steering angle and has its limit in steering performance. So to overcome this limit of steering performance of passive type railway vehicle, an active steering technology is being developed. In case of vehicle model with active steering system, the steering performance is improved remarkably compared to passive type vehicle model.

1차원 빔요소를 활용한 차축 변형고려 차륜-레일 접촉해석 (Wheel-Rail Contact Analysis Considering Axle Deformation Using a One-Dimensional Beam Element)

  • 최하영;이동형;권석진;서정원
    • 한국기계가공학회지
    • /
    • 제16권6호
    • /
    • pp.139-145
    • /
    • 2017
  • It is necessary to analyze the exact contact position and contact stress of the wheel-rail in order to predict damage to the wheel and rail. This study presents a wheel-rail contact analysis model that considers the deformation of the axle. When a wheel-rail contact analysis is performed using a full three-dimensional model of the wheelset and rail, the analytical model becomes very inefficient due to the increase in analysis time and cost. Therefore, modeling the element-coupling model of the wheel and rail as a three-dimensional element and the axle as a one-dimensional element is proposed. The wheel-rail contact characteristics in the proposed analysis model for straight and curved lines were analyzed and compared with the conventional three-dimensional analysis model. Considering the accuracy of the analysis results and time, the result shows that the proposed analytical model has almost the same accuracy as a full three-dimensional model, but the computational effort is significantly reduced.

철도차량 차축 재료의 파괴특성 적외선열화상 모니터링 (Infrared Thermographic Monitoring for Failure Characterization in Railway Axle Materials)

  • 김정국
    • 비파괴검사학회지
    • /
    • 제30권2호
    • /
    • pp.116-120
    • /
    • 2010
  • 차축과 차륜으로 구성되는 철도차량 윤축은 차량의 운행과 관련하여 안전과 직결되는 중요한 철도 부품의 하나이다. 본 연구에서는 철도차량의 차축 재료의 인장파괴거동에 대한 특성을 분석하였다. 20년 이상 운행된 전기기관차 및 디젤전기기관차의 차축 시편에 대하여 연장시험을 수행하였다. 인장시험 동안 시편의 파괴특성을 모니터링하기 위해 고속 적외선카메라가 사용되었는데, 인장시험 동안의 시편 표변의 온도 변화를 모니터링하여 온도 분포로부터 인장파괴거동을 설명하고 파괴모드를 규명하고자 하였다.