• Title/Summary/Keyword: 윤곽 검출

Search Result 343, Processing Time 0.024 seconds

Container Image Recognition using ART2-based Self-Organizing Supervised Learning Algorithm (ART2 기반 자가 생성 지도 학습 알고리즘을 이용한 컨테이너 인식 시스템)

  • Jung, Byung-Hee;Kim, Jae-Yong;Cho, Jae-Hyun;Kim, Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.393-398
    • /
    • 2005
  • 본 논문에서는 ART2 기반 자가 생성 지도 학습 알고리즘을 이용한 운송 컨테이너 식별자 인식 시스템을 제안한다. 일반적으로 운송 컨테이너의 식별자들은 글자의 색이 검정색 또는 흰색으로 이루어져 있는 특징이 있다. 이러한 특성을 고려하여 원 컨테이너 영상에 대해 검은색과 흰색을 제외한 모든 부분을 잡음으로 처리하기 위해 퍼지를 이용한 잡은 판단 방법을 적용하여 식별자 영역과 잡음을 구별한다. 식별자 영역을 제외한 잡음 영역을 전체 영상의 평균 픽셀값으로 대체시킨다. 그리고 Sobel 마스크를 이용하여 에지를 검출하고, 추출된 에지를 이용하여 수직 블록과 수평 블록을 검출하여 컨테이너의 식별자 영역을 추출하고 이진화한다. 이진화된 식별자 영역에 대해 검정색의 빈도수를 이용하여 흰바탕과 민바탕을 구분하고 8방향 윤곽선 추적 알고리즘을 적용하여 개별 식별자를 추출한다. 개별 식별자 인식을 위해 ART2 기반 자가 생성 지도 학습 알고리즘은 입력층과 은닉층 사이에 ART2를 적용하여 은닉층의 노드를 생성하고, 은닉층과 출력층 사이에 일반화된 델타 학습 방법과 Delta-bar-Delta 알고리즘을 적용하여 학습 성능을 개선한다. 실제 컨테이너 영상을 대상으로 실험한 결과, 기존의 식별자 추출 방법보다 제안된 식별자 추출 방법이 개선되었다. 그리고 기존의 식별자 인식 알고리즘보다 제안된 ART2 기반 자가 생성 지도 학습 알고리즘이 식별자의 학습 및 인식에 있어서 우수한 성능이 있음을 확인하였다.

  • PDF

Container Identifier Recognition Using Morphological Features and FCM-Based Fuzzy RBF Network (형태학적 특성과 FCM 기반 퍼지 RBF 네트워크를 이용한 컨테이너 식별자 인식)

  • Kim, Kwang-Baek;Kim, Young-Ju;Woo, Young-Woon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.6
    • /
    • pp.1162-1169
    • /
    • 2007
  • In this paper, we proposed a container identifier recognition method for containers used in harbors. After converting a real container image to a gray image, edges are detected from the gray image applying Prewitt mask and candidate identifier area is extracted using morphological features of individual identifier for identifying containers. Because noises are included in the extracted candidate identifier area, noises are eliminated and each identifier is separated using 4-directional edge tracking algorithm and Grassfire algorithm. Each identifier in the noise-free candidate identifier area is recognized using FCM-based row RBF network for discriminating containers. We used 300 real container images for experiment to evaluate the performance of the proposed method, and we could verify the proposed method is better than a conventional method.

Identifier Extraction of Shipping Container Images using Enhanced Binarization and Contour Tracking Algorithm (개선된 이진화와 윤곽선 추적 알고리즘을 이용한 운송 컨테이너의 식별자 추출)

  • Kim Kwang-baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.2
    • /
    • pp.462-466
    • /
    • 2005
  • The extraction and recognition of shipping container's identifier is difficult since the scale or the location of identifiers are not fixed-form and input images have some external noises. In this paper, based on these facts, first, edges are detected from input images using canny masking, and regions of container's Identifiers are extracted by applying horizontal and vertical histogram method to canny masked images. We use a fuzzy thresholding method to binaries the extracted container's identifier regions, and contour tracking algorithm to extract individual identifiers. In experimental results, we confirmed that the proposed method is superior In performance.

Fast Shape Matching Algorithm Based on the Improved Douglas-Peucker Algorithm (개량 Douglas-Peucker 알고리즘 기반 고속 Shape Matching 알고리즘)

  • Sim, Myoung-Sup;Kwak, Ju-Hyun;Lee, Chang-Hoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.10
    • /
    • pp.497-502
    • /
    • 2016
  • Shape Contexts Recognition(SCR) is a technology recognizing shapes such as figures and objects, greatly supporting technologies such as character recognition, motion recognition, facial recognition, and situational recognition. However, generally SCR makes histograms for all contours and maps the extracted contours one to one to compare Shape A and B, which leads to slow progress speed. Thus, this paper has made simple yet more effective algorithm with optimized contour, finding the outlines according to shape figures and using the improved Douglas-Peucker algorithm and Harris corner detector. With this improved method, progress speed is recognized as faster.

Appearance Information Extraction and Shading for Realistic Caricature Generation (실사형 캐리커처 생성을 위한 형태 정보 추출 및 음영 함성)

  • Park, Yeon-Chool;Oh, Hae-Seok
    • The KIPS Transactions:PartB
    • /
    • v.11B no.3
    • /
    • pp.257-266
    • /
    • 2004
  • This paper proposes caricature generation system that uses shading mechanism that extracts textural features of face. Using this method, we can get more realistic caricature. Since this system If vector-based, the generated character's face has no size limit and constraint. so it is available to transform the shape freely and to apply various facial expressions to 2D face. Moreover, owing to the vector file's advantage, It can be used in mobile environment as small file size This paper presents methods that generate vector-based face, create shade and synthesize the shade with the vector face.

A Study on AR- supported Generative FashionNet (증강현실(AR) 기반의 생성형 FashionNet 에 관한 연구)

  • Min-Yung Yu;Jae- Chern Yoo
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.851-853
    • /
    • 2024
  • 본 논문에서는 MediaPipe 라이브러리 및 OpenCV 를 활용한 포즈 추정 및 체형 인식 알고리즘을 통해 사용자의 체형과 선호도에 맞는 의류를 가상으로 입어볼 수 있는 생성형 FashionNet 을 제안한다. 구체적으로는 먼저 웹 카메라를 통해 얻어진 사용자의 외형 이미지로부터, 사용자의 신체 포즈를 추정하고, OpenCV 코드를 통해 사용자의 신체 윤곽을 검출한다. 이후 가상 옷장 데이터베이스로부터 선택된 가상 의류를 사용자의 신체 윤곽에 맞춰 입혀진 가상 피팅 이미지를 생성한다. 특히, 본 논문의 FashionNet 은 사용자와 카메라 간의 거리에 따른 인체 비율을 사전 실험으로 미리 설정해놓음으로써, 카메라와 사용자간의 거리에 관계없이 의류 사이즈가 사용자의 신체 조건에 맞게 자동으로 피팅되는 특징을 갖는다. 또한 가상 옷장 데이터베이스로부터 의류 아이템 선정의 편의를 제공하기 위해, 가상 현실 속에서 스크린상의 메뉴 버튼과 사용자의 포즈 동작간의 상호작용을 통해 FashionNet 의 다양한 기능을 수행할 수 있는 증강현실(AR) 기법을 적용하였다. 가상 옷장 데이터베이스를 사용한 다양한 가상 피팅 체험 실험을 통해 온라인상에서 자기가 원하는 의류를 가상으로 착용해 볼 수 있고 이를 통해 구매를 결정하는 등의 FashionNet 의 유효성과 가능성을 확인하였다.

Automatic Defect Inspection with Adaptive Binarization and Bresenham's Algorithm for Spectacle Lens Products (적응적 이진화 기법과 Bresenham's algorithm을 이용한 안경 렌즈 제품의 자동 흠집 검출)

  • Kim, Kwang Baek;Song, Dong Heon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.7
    • /
    • pp.1429-1434
    • /
    • 2017
  • In automatic defect detection problem for spectacle lenses, it is important to extract lens area accurately. Many existing detection methods fail to do it due to insufficient minute noise removal. In this paper, we propose an automatic defect detection method using Bresenham algorithm and adaptive binarization strategy. After usual average binarization, we apply Bresenham algorithm that has the power in extracting ellipse shape from image. Then, adaptive binarization strategy is applied to the critical minute noise removal inside the lens area. After noise removal, We can also compute the influence factor of the defect based on the fuzzy logic with two membership functions such as the size of the defect and the distance of the defect from the center of the lens. In experiment, our method successfully extracts defects in 10 out of 12 example images that include CHEMI, MID, HL, HM type lenses.

Real-time Hand Pose Recognition Using HLF (HLF(Haar-like Feature)를 이용한 실시간 손 포즈 인식)

  • Kim, Jang-Woon;Kim, Song-Gook;Hong, Seok-Ju;Jang, Han-Byul;Lee, Chil-Woo
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.897-902
    • /
    • 2007
  • 인간과 컴퓨터간의 전통적인 인터페이스는 인간이 요구하는 다양한 인터페이스를 제공하지 못한다는 점에서 점차 사용하기 불편하게 되었고 이는 새로운 형태의 인터페이스에 대한 요구로 이어지게 되었다. 본 논문에서는 이러한 추세에 맞추어 카메라를 통해 인간의 손 제스처를 인식하는 새로운 인터페이스를 연구하였다. 손은 자유도가 높고 3차원의 view direction에 의해 형상이 매우 심하게 변한다. 따라서 윤곽선 기반방법과 같은 2차원으로 투영된 영상에서 contour나 edge의 정보로 손 제스처를 인식하는 데는 한계가 있다. 그러나 모델기반 방법은 3차원 정보를 이용하기 때문에 손 제스처를 인식하는데 좋으나 계산량이 많아 실시간으로 처리하기가 쉽지 않다. 이러한 문제점을 해결하기 위해 손 형상에 대한 대규모 데이터베이스를 구성하고 정규화된 공간에서 Feature 간의 연관성을 파악하여 훈련 데이터 모델을 구성하여 비교함으로써 실시간으로 손 포즈를 구별할 수 있다. 이러한 통계적 학습 기반의 알고리즘은 다양한 데이터와 좋은 feature의 검출이 최적의 성능을 구현하는 것과 연관된다. 따라서 배경으로부터 노이즈를 최대한 줄이기 위해 피부의 색상 정보를 이용하여 손 후보 영역을 검출하고 검출된 후보 영역으로부터 HLF(Haar-like Feature)를 이용하여 손 영역을 검출한다. 검출된 손 영역으로부터 패턴 분류 과정을 거쳐 손 포즈를 인식 하게 된다. 패턴 분류 과정은 HLF를 이용하여 손 포즈를 인식하게 되는데 미리 학습된 각 포즈에 대한 HLF를 이용하여 손 포즈를 인식하게 된다. HLF는 Violar가 얼굴 검출에 적용한 것으로 얼굴 검출에 좋은 결과를 보여 주었으며, 이는 적분 이미지로부터 추출한 HLF를 이용한 Adaboost 학습 알고리즘을 사용하였다. 본 논문에서는 피부색의 색상 정보를 이용 배경과 손 영상을 최대한 분리하여 배경의 대부분이 Adaboost-Haar Classifier의 첫 번째 스테이지에서 제거되는 방법을 이용하여 그 성능을 더 향상 시켜 손 형상 인식에 적용하였다.

  • PDF

Automatic Endocardial Boundary Detection on 2D Short Axis Echocardiography for Left Ventricle using Geometric Model (좌심실에 대한 2D 단축 심초음파도에서 기하학적인 모델을 이용한 심내벽 윤곽선의 자동 검출)

  • 김명남;조진호
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.4
    • /
    • pp.447-454
    • /
    • 1994
  • A method has been proposed for the fully automatic detection of left ventricular endocardial boundary in 2D short axis echocardlogram using geometric model. The procedure has the following three distinct stages. First, the initial center is estimated by the initial center estimation algorithm which is applied to decimated image. Second, the center estimation algorithm is applied to original image and then best-fit elliptic model estimation is processed. Third, best-fit boundary is detected by the cost function which is based on the best-fit elliptic model. The proposed method shows effective result without manual intervention by a human operator.

  • PDF

A Vertex-Detecting of Hanguel Patterns Using Nested Contour Shape (중첩윤곽 형상에 의한 한글패턴의 정점검출)

  • Koh, Chan;Lee, Dai-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.2
    • /
    • pp.112-123
    • /
    • 1990
  • This paper presents a vertex-detecting of Hanguel patterns using nested contour shape. Inputed binary character patterns are transformed by distance transformation method and make a new file of transferred data by analysis of charactersitcs. A new vertex-detecting algorithm for recognizing Hanguel patterns using the two data files is proposed. This algorithm is able to reduce the projecting parts of Hanguel pattern, separate the connecting parts between different strokes, set the code number by transformed value of coorked features. It makes the output of results in order to apply the Hanguel recognition.

  • PDF