• Title/Summary/Keyword: 윤곽 검출

Search Result 343, Processing Time 0.048 seconds

The Identifier Recognition from Shipping Container Image by Using Contour Tracking and Self-Generation Supervised Learning Algorithm Based on Enhanced ART1 (윤곽선 추적과 개선된 ART1 기반 자가 생성 지도 학습 알고리즘을 이용한 운송 컨테이너 영상의 식별자 인식)

  • 김광백
    • Journal of Intelligence and Information Systems
    • /
    • v.9 no.3
    • /
    • pp.65-79
    • /
    • 2003
  • In general, the extraction and recognition of identifier is very hard work, because the scale or location of identifier is not fixed-form. And, because the provided image is contained by camera, it has some noises. In this paper, we propose methods for automatic detecting edge using canny edge mask. After detecting edges, we extract regions of identifier by detected edge information's. In regions of identifier, we extract each identifier using contour tracking algorithm. The self-generation supervised learning algorithm is proposed for recognizing them, which has the algorithm of combining the enhanced ART1 and the supervised teaming method. The proposed method has applied to the container images. The extraction rate of identifier obtained by using contour tracking algorithm showed better results than that from the histogram method. Furthermore, the recognition rate of the self-generation supervised teaming method based on enhanced ART1 was improved much more than that of the self-generation supervised learning method based conventional ART1.

  • PDF

Development of a Detection and Recognition System for Rectangular Marker (사각형 마커 검출 및 인식 시스템 개발)

  • Kang Sun-Kyung;Lee Sang-Seol;Jung Sung-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.4 s.42
    • /
    • pp.97-107
    • /
    • 2006
  • In this paper, we present a method for the detection and recognition of rectangular markers from a camera image. It converts the camera image to a binary image and extracts contours of objects in the binary image. After that. it approximates the contours to a list of line segments. It finds rectangular markers by using geometrical features which are extracted from the approximated line segments. It normalizes the shape of extracted markers into exact squares by using the warping technique. It extracts feature vectors from marker image by using principal component analysis. It then calculates the distance between feature vector of input marker image and those of standard markers. Finally, it recognizes the marker by using minimum distance method. Experimental results show that the Proposed method achieves 98% recognition rate at maximum for 50 markers and execution speed of 11.1 frames/sec for images which contains eleven markers.

  • PDF

Detection of Flaws in Air Deck using Non-Destructive Testing (비파괴 검사를 이용한 항공 갑판의 결함 검출)

  • Kim, Kwang-Baek;Cho, Jae-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.9
    • /
    • pp.1865-1870
    • /
    • 2011
  • In this paper, we propose an effective method that automatically detects flaws in air deck by using non-destructive testing. First, Gamma correlation transform, 7 ${\times}$ 7 and 13 ${\times}$ 13 Sobel mask apply to the image of air deck acquired non-destructive testing in order to detect the edge of the image. Second, the edge detection area is smoothed and corrected by mean binarization method. Finally, the region of flaws in air deck is detected by a labeling method after removing the noise by the erosion and the dilation operation. In experimental results, we showed that the proposed detection method is effective in air deck.

Identifiers Recognition of Container Image Using Morphological Characteristic and FCM-based Fuzzy RBF Networks (형태학적 특성과 FCM 기반 퍼지 RBF 네트워크를 이용한 컨테이너 식별자 인식)

  • Kim, Tae-Hyung;Soung, Won-Goo;Kim, Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.252-257
    • /
    • 2007
  • 우리나라의 항만은 수 출입화물의 99.5%를 처리하며, 육로 및 철도 수송 물동량의 기종점 역할을 수행하는 중요한 곳으로서 항만 물동량의 신속한 처리와 자동화 시스템에 의한 비용절감은 엄청난 효과를 가져온다. 따라서 본 논문에서는 항만에서 취급하는 컨테이너를 자동으로 식별할 수 있는 자동화 방법을 제안한다. 실제 컨테이너 영상을 그레이 영상으로 변환한 후, 프리윗 마스크(Prewitt-Mask)를 적용하여 윤곽선을 추출하고 컨테이너를 식별할 수 있는 개별 식별자의 형태학적 특징 정보를 이용하여 식별자 후보영역을 검출한다. 검출된 식별자 후보영역은 개별 식별자 영역외에 잡음 영역이 포함되어 있으므로 4방향 윤곽선 추적 알고리즘과 Grassfire 알고리즘을 적용하여 잡음을 제거하고 개별 식별자들을 각각 객체화한다. 잡음이 제거된 식별자 후보 영역에서 객체화 한 개별 식별자는 컨테이너 식별을 위해 FCM 기반 퍼지 RBF 네트워크를 적용하여 인식한다. 본 논문에서 제안한 컨테이너 식별자 인식 방법의 성능을 평가하기 위해 실제 컨테이너 영상 300장을 대상으로 실험한 결과, 기존의 방법보다 인식 성능이 개선되었음을 확인할 수 있었다.

  • PDF

ART2 기반 RBF 네트워크와 얼굴 인증을 이용한 주민등록증 인식

  • ;Lee, Jae-Eon;Kim, Kwang-Baek
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2005.11a
    • /
    • pp.526-535
    • /
    • 2005
  • 우리나라의 주민등록증은 주소지, 주민등록 변호, 얼굴사진, 지문 등 개개인의 방대한 정보를 가진다. 현재의 플라스틱 주민등록증은 위조 및 변조가 쉽고 날로 전문화 되어가고 있다. 따라서 육안으로 위조 및 변조 사실을 쉽게 확인하기가 어려워 사회적으로 많은 문제를 일으키고 있다. 이에 본 논문에서는 주민등록증 영상을 자동 인식할 수 있는 개선된 ART2 기반 RBF 네트워크와 얼굴인증을 이용한 주민등록증 자동 인식 방법을 제안한다. 제안된 방법은 주민등록증 영상에서 주민등록번호와 발행일을 추출하기 위하여 영상을 소벨마스크와 미디언 필터링을 적용한 후에 수평 스미어링을 적용하여 주민등록번호와 발행일 영역을 검출한다. 그리고 4 방향 윤곽선 추적 알고리즘으로 개별 문자를 추출하기 위한 전 단계로 주민등록증 영상에 대해 고주파 필터링을 적용하여 주민등록증 영상 전체를 이진화 한다. 이진화된 주민등록영상에서 COM 마스크를 적용하여 주민등록번호와 발행일 코드를 복원하고 검출된 각 영역에 대해 4 방향 윤곽선 추적 알고리즘으로 개별 문자를 추출한다. 추출된 개별 문자는 개선된 ART2 기반 RBF 네트워크를 제안하여 인식에 적용한다. 제안된 ART2 기반 RBF 네트워크는 학습 성능을 개선하기 위하여 중간충과 출력층의 학습에 퍼지 제어 기법을 적용하여 학습률을 동적으로 조정한다. 얼굴인증은 템플릿 매칭 알고리즘을 이용하여 얼굴 템플릿 데이터베이스를 구축하고 주민등록증애서 추출된 얼굴영역과의 유사도를 측정하여 주민등록증 얼굴 영역의 위조여부를 판별한다.

  • PDF

Automatic Left Ventricle Segmentation on Cardiac Magnetic Resonance Image (심장 자기공명영상에서의 좌심실 자동 분할 알고리즘)

  • Jo, Hyun Wu;Lee, Hae-Yeoun
    • Annual Conference of KIPS
    • /
    • 2010.11a
    • /
    • pp.561-564
    • /
    • 2010
  • 의학과 기술 발달로 인해 질병과 사고에 의한 사망률은 줄어들었으나, 심장 관련 질환에 의한 사망률은 증가하였다. 심장 질환을 예방하는 데는 정기적인 검진을 통해 심장기능을 분석하고 관찰하는 것이 중요하다. 심장 기능의 분석은 이완기와 수축기 사이의 혈류량 및 심박구출률 계산을 통한 심장 운동능력 평가에 의해 이루어진다. 본 연구에서는 심장 단축 자기공명영상에서 좌심실 영역을 자동 분할하여 혈류량 및 심박 구출률을 계산하는 알고리즘을 제안한다. K평균 군집화 기법을 적용하여 좌심실을 분할하고, 그래프 탐색 기법에 기반하여 분할 오류를 수정하였다. 15명의 지원자에 대해 제안하는 알고리즘을 사용하여 혈류량과 심박구출률을 계산하였고, 수동윤곽검출 및 General Electronics 사의 MASS 소프트웨어와 비교하였다. 제안한 알고리즘의 수동윤곽검출과 차이는 혈류량의 경우 평균적으로 이완기에 $4.6mL{\pm}3.9$, 수축기에 $2.1mL{\pm}2.4$로 나타났고, 심박구출률은 $1.8%{\pm}1.7$이었다. 전반적으로 MASS소프트웨어에 비해 좋은 성능을 나타내었다.

The Robust Iris Extraction for various pose (자세에 강인한 홍채 영역 추출)

  • Kim Soolin;Kim Jaemin;Cho Seongwon;Kim Daehwan
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.359-362
    • /
    • 2005
  • 본 논문에서는 홍채 인식을 할 때 여러 가지 자세 변화에 민감한 홍채 패턴을 일정한 기준에 따라 항상 고정된 형태로 추출하기 위해 눈꺼풀의 윤곽을 검출하여 눈의 모양을 바로잡는 방법을 소개한다. 이와 더불어 효과적인 홍채 영역 검출을 위한 정확한 동공의 경계 측정과 공막 경계 측정을 위한 새로운 방법을 제시한다. Template Matching과 Mean Shape을 이용하여 여러 가지 다양한 눈의 형태와 눈썹의 영향 때문에 판단이 까다로운 눈꺼풀의 경계를 검출하였다. 동공 경계의 자세한 검출은 Hough Transform을 이용하였고 공막의 경계는 최소 자승법을 이용하였다.

  • PDF

On-road Vehicle and Area Detection Using Edge Connectivity and Corner Clustering (에지 연결성과 코너 군집화를 이용한 도로영역 및 차량 검출)

  • Yu, Jae-Hyung;Han, Young-Joon;Hahn, Hern-Soo
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.1035-1036
    • /
    • 2008
  • 본 논문은 주행 중인 자동차에서 획득한 영상에서 배경과 도로영역 및 물체를 분리하기 위한 영역분할 기법과 물체 검출 기법을 제안하고자 한다. 영상내의 에지라인의 화소 간 연결성을 이용한 라인검출을 이용하여 도로의 윤곽선 정보를 추출하고 컬러분포를 통해 배경과 도로영역을 분리한다. 물체가 가지는 코너 특성을 이용하여 나타난 정보들의 군집화를 통해 후보영역을 얻고 컬러 성분을 이용하여 개별 물체를 분리해냈다. 제안된 알고리즘은 복잡한 배경을 갖는 도로영상의 경우에도 도로영역과 물체의 검출에 강인함을 실험을 통해 검증하였다.

  • PDF

A study of face detection using color component (색상요소를 고려한 얼굴검출에 대한 연구)

  • 이정하;강진석;최연성;김장형
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.240-243
    • /
    • 2002
  • In this paper, we propose a face region detection based on skin-color distribution and facial feature extraction algorithm in color still images. To extract face region, we transform color using general skin-color distribution. Facial features are extracted by edge transformation. This detection process reduces calculation time by a scale-down scanning from segmented region. we can detect face region in various facial Expression, skin-color deference and tilted face images.

  • PDF

Design and Implementation of Measurement System of Carpus Callosum (뇌량의 형태검출 및 측정 시스템의 설계 및 구현)

  • Choi, Yoo-Joo;Tae, Woo-Suk;Hong, Seung-Bong;Kim, Myoung-Hee
    • Annual Conference of KIPS
    • /
    • 2002.04b
    • /
    • pp.1235-1238
    • /
    • 2002
  • 본 연구에서는 선천적 뇌량의 기형 판별 및 타질환에 의한 뇌량의 형태학적 변화추적을 위한 뇌량의 형태검출 및 측정 시스템을 설계, 구현하였다. 개발 시스템은 대뇌에 대한 자기공명영상의 정중시상단면을 기반으로 간단한 사용자 인터랙션을 통하여 초기 뇌량 영역을 선택하고, 영역확장법과 윤곽선 검출기법을 통하여 뇌량의 형태를 검출하였다. 또한, Witelson의 영역측정 기준에 따라, 뇌량의 영역을 7개의 영역으로 구분하고, 각 구성영역의 크기를 자동 측정함으로써, 뇌량의 형태학적 변화분석이 용이하도록 하였다.

  • PDF