• Title/Summary/Keyword: 유-러닝

Search Result 139, Processing Time 0.023 seconds

YouTube Channel Ranking Scheme based on Hidden Qualitative Information Analysis (유튜브 은닉 질적 정보 분석 기반 유튜브 채널 랭킹 기법)

  • Lee, Ji Hyeon;Oh, Hayoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.7
    • /
    • pp.757-763
    • /
    • 2019
  • Youtube has become so popular that it is called the age of YouTube. As the number of users and contents increase, the choice of information increases. However, it is difficult to select information that meets the needs of users. YouTube provides recommendations based on their watch list. Therefore, in this study, we want to analyze the channel of user's subject in various angles and provide the proposed scheme based on the crawled channels, measurement of the perception of channels and channel videos through quantitative data and hidden qualitative data analysis. Based on the above two data analysis, it is possible to know the recognition of the channel and the recognition of the channel video, thereby providing a ranking of the channels that deal with the topic. Finally, as a case study, we recommend English learning channels to users based on numerical data statistics and emotional analysis results to maximize flipped learning effect regardless of time and space.

Analysis of Research Trends Related to drug Repositioning Based on Machine Learning (머신러닝 기반의 신약 재창출 관련 연구 동향 분석)

  • So Yeon Yoo;Gyoo Gun Lim
    • Information Systems Review
    • /
    • v.24 no.1
    • /
    • pp.21-37
    • /
    • 2022
  • Drug repositioning, one of the methods of developing new drugs, is a useful way to discover new indications by allowing drugs that have already been approved for use in people to be used for other purposes. Recently, with the development of machine learning technology, the case of analyzing vast amounts of biological information and using it to develop new drugs is increasing. The use of machine learning technology to drug repositioning will help quickly find effective treatments. Currently, the world is having a difficult time due to a new disease caused by coronavirus (COVID-19), a severe acute respiratory syndrome. Drug repositioning that repurposes drugsthat have already been clinically approved could be an alternative to therapeutics to treat COVID-19 patients. This study intends to examine research trends in the field of drug repositioning using machine learning techniques. In Pub Med, a total of 4,821 papers were collected with the keyword 'Drug Repositioning'using the web scraping technique. After data preprocessing, frequency analysis, LDA-based topic modeling, random forest classification analysis, and prediction performance evaluation were performed on 4,419 papers. Associated words were analyzed based on the Word2vec model, and after reducing the PCA dimension, K-Means clustered to generate labels, and then the structured organization of the literature was visualized using the t-SNE algorithm. Hierarchical clustering was applied to the LDA results and visualized as a heat map. This study identified the research topics related to drug repositioning, and presented a method to derive and visualize meaningful topics from a large amount of literature using a machine learning algorithm. It is expected that it will help to be used as basic data for establishing research or development strategies in the field of drug repositioning in the future.

The Physical Properties of the Smart Education Space (스마트교육 공간의 물리특성)

  • Kim, Hyoung-Jun;Yi, Yong-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3247-3252
    • /
    • 2013
  • The convergence of ICT and cloud computing is treated as a main issue all over the fields including education. This development leads to change from e-learning to u-learning and smart education. Therefore, we need to study in term of the systematic and a long-term viewpoint how smart education environment have an influence on the practical space. And we need a concrete study for smart education space based on property of space. Under these critical mind, this study understands the smart education space in terms of the convergence of computing space and physical space. As a Result, smart education space have major property such as flexibility, communication, polyvalence.

A Study on the Ubiquitous for Building Life-long Educational System (평생교육체제를 구축하기 위한 유비쿼터스에 관한 연구)

  • Shin, Jae-Heub
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.4 no.4
    • /
    • pp.39-54
    • /
    • 2004
  • In this study, the following findings were obtained: First, life-long educational system should be reinforced that can train and educate people to fit their situation and provide the necessary manpower in a just-in-time manner by getting away from the school-centered education and rapidly introducing the knowledge required in both the world market and the domestic market. This can be said to be the global trend in the ubiquitous age. Second, government should make efforts to build up the life-long educational system that can make the persons trained and educated in schools the manpower required by the state and society. Third, Life-long learning policy starts with providing for the system of lifting all kinds of limits and obstacles so that anyone needing learning can learn and his learning may not discriminated from schooling. For this policy or system to be effectively promoted, government should reinforce administrative and financial support system for investment in and research on the ubiquitous department. Fourth, It is quiet right that the very effort we are going give the super to the ubiquitous education is a shortcut to solving rapidly lots of problems heaped on our present life-long educational system.

  • PDF

Comparing the Performance of Artificial Neural Networks and Long Short-Term Memory Networks for Rainfall-runoff Analysis (인공신경망과 장단기메모리 모형의 유출량 모의 성능 분석)

  • Kim, JiHye;Kang, Moon Seong;Kim, Seok Hyeon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.320-320
    • /
    • 2019
  • 유역의 수문 자료를 정확하게 분석하는 것은 수리 구조물을 효율적으로 운영하기 위한 중요한 요소이다. 인공신경망(Artificial Neural Networks, ANNs) 모형은 입 출력 자료의 비선형적인 관계를 해석할 수 있는 모형으로 강우-유출 해석 등 수문 분야에 다양하게 적용되어 왔다. 이후 기존의 인공신경망 모형을 연속적인(sequential) 자료의 분석에 더 적합하도록 개선한 회귀신경망(Recurrent Neural Networks, RNNs) 모형과 회귀신경망 모형의 '장기 의존성 문제'를 개선한 장단기메모리(Long Short-Term Memory Networks, 이하 LSTM)가 차례로 제안되었다. LSTM은 최근에 주목받는 딥 러닝(Deep learning) 기법의 하나로 수문 자료와 같은 시계열 자료의 분석에 뛰어난 성능을 보일 것으로 예상되며, 수문 분야에서 이에 대한 적용성 평가가 요구되고 있다. 본 연구에서는 인공신경망 모형과 LSTM 모형으로 유출량을 모의하여 두 모형의 성능을 비교하고 향후 LSTM 모형의 활용 가능성을 검토하고자 하였다. 나주 수위관측소의 수위 자료와 인접한 기상관측소의 강우량 자료로 모형의 입 출력 자료를 구성하여 강우 사상에 대한 시간별 유출량을 모의하였다. 연구 결과, 1시간 후의 유출량에 대해서는 두 모형 모두 뛰어난 모의 능력을 보였으나, 선행 시간이 길어질수록 LSTM의 정확성은 유지되는 반면 인공신경망 모형의 정확성은 점차 떨어지는 것으로 나타났다. 앞으로의 연구에서 유역 내 다양한 수리 구조물에 의한 유 출입량을 추가로 고려한다면 LSTM 모형의 활용성을 보다 더 확장할 수 있을 것이다.

  • PDF

Design and Implementation of Hierarchical Image Classification System for Efficient Image Classification of Objects (효율적인 사물 이미지 분류를 위한 계층적 이미지 분류 체계의 설계 및 구현)

  • You, Taewoo;Kim, Yunuk;Jeong, Hamin;Yoo, Hyunsoo;Ahn, Yonghak
    • Convergence Security Journal
    • /
    • v.18 no.3
    • /
    • pp.53-59
    • /
    • 2018
  • In this paper, we propose a hierarchical image classification scheme for efficient object image classification. In the non-hierarchical image classification, which classifies the existing whole images at one time, it showed that objects with relatively similar shapes are not recognized efficiently. Therefore, in this paper, we introduce the image classification method in the hierarchical structure which attempts to classify object images hierarchically. Also, we introduce to the efficient class structure and algorithms considering the scalability that can occur when a deep learning image classification is applied to an actual system. Such a scheme makes it possible to classify images with a higher degree of confidence in object images having relatively similar shapes.

  • PDF

A Study on Rotating Object Classification using Deep Neural Networks (깊은신경망을 이용한 회전객체 분류 연구)

  • Lee, Yong-Kyu;Lee, Yill-Byung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.5
    • /
    • pp.425-430
    • /
    • 2015
  • This paper is a study to improve the classification efficiency of rotating objects by using deep neural networks to which a deep learning algorithm was applied. For the classification experiment of rotating objects, COIL-20 is used as data and total 3 types of classifiers are compared and analyzed. 3 types of classifiers used in the study include PCA classifier to derive a feature value while reducing the dimension of data by using Principal Component Analysis and classify by using euclidean distance, MLP classifier of the way of reducing the error energy by using error back-propagation algorithm and finally, deep learning applied DBN classifier of the way of increasing the probability of observing learning data through pre-training and reducing the error energy through fine-tuning. In order to identify the structure-specific error rate of the deep neural networks, the experiment is carried out while changing the number of hidden layers and number of hidden neurons. The classifier using DBN showed the lowest error rate. Its structure of deep neural networks with 2 hidden layers showed a high recognition rate by moving parameters to a location helpful for recognition.

Lost and Found Registration and Inquiry Management System for User-dependent Interface using Automatic Image Classification and Ranking System based on Deep Learning (딥 러닝 기반 이미지 자동 분류 및 랭킹 시스템을 이용한 사용자 편의 중심의 유실물 등록 및 조회 관리 시스템)

  • Jeong, Hamin;Yoo, Hyunsoo;You, Taewoo;Kim, Yunuk;Ahn, Yonghak
    • Convergence Security Journal
    • /
    • v.18 no.4
    • /
    • pp.19-25
    • /
    • 2018
  • In this paper, we propose an user-centered integrated lost-goods management system through a ranking system based on weight and a hierarchical image classification system based on Deep Learning. The proposed system consists of a hierarchical image classification system that automatically classifies images through deep learning, and a ranking system modules that listing the registered lost property information on the system in order of weight for the convenience of the query process.In the process of registration, various information such as category classification, brand, and related tags are automatically recognized by only one photograph, thereby minimizing the hassle of users in the registration process. And through the ranking systems, it has increased the efficiency of searching for lost items by exposing users frequently visited lost items on top. As a result of the experiment, the proposed system allows users to use the system easily and conveniently.

  • PDF

Analysis of Emotions in Broadcast News Using Convolutional Neural Networks (CNN을 활용한 방송 뉴스의 감정 분석)

  • Nam, Youngja
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.8
    • /
    • pp.1064-1070
    • /
    • 2020
  • In Korea, video-based news broadcasters are primarily classified into terrestrial broadcasters, general programming cable broadcasters and YouTube broadcasters. Recently, news broadcasters get subjective while targeting the desired specific audience. This violates normative expectations of impartiality and neutrality on journalism from its audience. This phenomenon may have a negative impact on audience perceptions of issues. This study examined whether broadcast news reporting conveys emotions and if so, how news broadcasters differ according to emotion type. Emotion types were classified into neutrality, happiness, sadness and anger using a convolutional neural network which is a class of deep neural networks. Results showed that news anchors or reporters tend to express their emotions during TV broadcasts regardless of broadcast systems. This study provides the first quantative investigation of emotions in broadcasting news. In addition, this study is the first deep learning-based approach to emotion analysis of broadcasting news.

Win-Loss Prediction Using AOS Game User Data

  • Ye-Ji Kim;Jung-Hye Min
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.12
    • /
    • pp.23-32
    • /
    • 2023
  • E-sports, a burgeoning facet of modern sports culture, has achieved global prominence. Particularly, Aeon of Strife (AOS) games, emblematic of E-sports, blend individual player prowess with team dynamics to significantly influence outcomes. This study aggregates and analyzes real user gameplay data using statistical techniques. Furthermore, it develops and tests win-loss prediction models through machine learning, leveraging a substantial dataset of 1,149,950 individual data points and 230,234 team data points. These models, employing five machine learning algorithms, demonstrate an average accuracy of 80% for individual and 95% for team predictions. The findings not only provide insights beneficial to game developers for enhancing game operations but also offer strategic guidance to general users. Notably, the team-based model outperformed the individual-based model, suggesting its superior predictive capability.