• Title/Summary/Keyword: 유효 체적

Search Result 161, Processing Time 0.025 seconds

The Application of Equivalent Area to the Volume Velocity for Using the Vibro-acoustical Reciprocity (진동-음향 상반 원리에 이용되는 음원의 유효 면적 측정)

  • 고강호
    • Journal of KSNVE
    • /
    • v.9 no.5
    • /
    • pp.943-948
    • /
    • 1999
  • This paper proposes a feasible and effective method for measuring the mechanical-acoustic transfer function by the application of equivalent area and velocity transfer function, a manifestation of the vibro-acoustical reciprocity principle. On the contrary to the volume velocity used in traditional method, the equivalent area is a peculiar raidation characteristics of sound sources and not influenced by any input signal for driving sound source. This invariant property of equivalent area can get rid of boresome works to measure the volume velocity of a sound source every time the driving signal is changed. Moreover, this method has a remarkable advantage to use a general loudspeaker as an accoustic exciter without the assumption of point source and can be applied to all kinds of sound sources even if they are not omni-directional sources.

  • PDF

Effective thermal conductivity of the phase change material with metal scrap (금속스크랩이 혼합된 상변화물질의 유효열전도율)

  • 김시범;노승탁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.6
    • /
    • pp.923-928
    • /
    • 1986
  • A set of measurements has been made for the thermal conductivity of the pure paraffin in liquid and solid phases and for the effective thermal conductivity of the paraffin with metal scrap with the aid of the heat flux meter. Ther thermopile-type heat flux meter has been designed by steady state method and the functional relation between the temperature difference of both sides and heat flux has been obtained. The measured values of thermal conductivity are compared with the existing data for the pure paraffin and with the predicated values from the suggested model in which only one empirical constant is contained. The comparison within ten percent of the volume fraction of the metal scrap in the paraffin is satisfactory.

A Theoretical Study on Interface Characteristics of SiC Particulate Reinforced Metal Matrix Composite Using Ultrasonics (초음파를 이용한 입자강화 금속복합재료의 계면특성에 관한 이론적 연구)

  • Lee, Joon-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.13 no.4
    • /
    • pp.9-17
    • /
    • 1994
  • It is well recognized recently that ultrasonic technique is one of the most widely used methods of nondestructive evaluation to characterize material properties of nonconventional engineering materials. Therefore it is very important to understand physical phenomenon on propagation behavior of elastic wave in these materials, which is directly associated with ultrasonic signals in the test. In this study, the theoretical analysis on multi-scattering of harmonic elastic wave due to the particulate with interface between matrix and fiber in metal matrix composites(MMCs) was done on the basis of Lax's quasi-crystalline approximation and extinction theorem. SiC particulate (SiCp) reinforced A16061-T6 composite material was chosen for this analysis. From this analysis, frequency dependences of phase velocity and amplitude attenuation of effective plane wave due to the change of volume fraction of SiC particulate were clearly found. It was also shown that the interface condition between matrix and fiber in MMCs gives a direct effect on the variation of phase velocity of plane wave in MMCs.

  • PDF

Study on the Determination of the Maximum Injection Pressure for Groundwater Rechargement (지하수 함양시 최대 주입압력 결정을 위한 연구)

  • Choi, Jin O;Jeong, Hyeon Cheol;Chung, Choong Ki;Kim, Chang Yong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.4
    • /
    • pp.501-508
    • /
    • 2022
  • Required essential technique is to determine the maximum recharge pressure in the well with condition of non-ground failure for the recovery of the groundwater. Based on the classical soil mechanics, the maximum recharge pressure was estimated with the numerical anlaysis and laboratory triaxial test. In the numerical analysis, the maximum recharge pressure is defined as the ground failure stress. The ground failure of the sand was defined as the piping and the one of the caly was to the undrained failure by the confined pressure increment. In the triaxial test, the recharge pressure in the ground was modified by the back pressure in the specimen. In case of sand, the volume strain was dramatically increased at the 93 % of the maximum back pressure, same meaning of the 0 effective stress state. In case of clay, the only radial volume strain was to reached 1.5 % without failure. Therefore, The maximum recharge pressure could be determined with the numerical analysis and triaxial test.

Experimental Study on the Unsaturated Characteristics of Dredging Soils at Saemangeum Area (새만금지역 준설토의 불포화 특성에 대한 실험적 연구)

  • Song, Young-Suk;You, Seung-Kyong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.3
    • /
    • pp.25-32
    • /
    • 2011
  • The matric suction and volumetric water content of dredging soils obtained from Saemangeum area were measured by the automated Soil-Water Characteristic Curve (SWCC) apparatus under both drying and wetting conditions. Based on the test result, SWCCs of the dredging soils were estimated by the van Genuchten(1980) model. The matric suction of drying process is larger than that of wetting process at a same effective degree of saturation. The suction stresses for various matirc suctions were estimated using Lu and Likos(2006) model and the Suction Stress Characteristic Curves (SSCC) were predicted using the independent parameter of SWCC. The suction stress of drying path was increased and decreased, while the suction stress of wetting path was continuously decreased with increasing the effective degree. Also, the suction stress of drying path is larger than that of wetting path at a same effective degree of saturation. The Hydraulic Conductivity Function(HCF) was also predicted by the van Genuchten(1980) model. The hydraulic conductivity was increased with increasing the volumetric water content. The hydraulic conductivity of drying path is larger than that of wetting path at a same matric suction. According to the results of SWCCs and SSCCs, the hysteresis phenomenon of suction stress or matric suction during both drying and wetting paths was occurred. The main reason of hysteresis phenomenon is a ink bottle effect of water among soil particles.

Estimation of Body Weight Using Body Volume Determined from Three-Dimensional Images for Korean Cattle (한우의 3차원 영상에서 결정된 몸통 체적을 이용한 체중 추정)

  • Jang, Dong Hwa;Kim, Chulsoo;Kim, Yong Hyeon
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.393-400
    • /
    • 2021
  • Body weight of livestock is a crucial indicator for assessing feed requirements and nutritional status. This study was performed to estimate the body weight of Korean cattle (Hanwoo) using body volume determined from three-dimensional (3-D) image. A TOF camera with a resolution of 640×480 pixels, a frame rate of 44 fps and a field of view of 47°(H)×37°(V) was used to capture the 3-D images for Hanwoo. A grid image of the body was obtained through preprocessing such as separating the body from background and removing outliers from the obtained 3-D image. The body volume was determined by numerical integration using depth information to individual grid. The coefficient of determination for a linear regression model of body weight and body volume for calibration dataset was 0.8725. On the other hand, the coefficient of determination was 0.9083 in a multiple regression model for estimating body weight, in which the age of Hanwoo was added to the body volume as an explanatory variable. Mean absolute percentage error and root mean square error in the multiple regression model to estimate the body weight for validation dataset were 8.2% and 24.5kg, respectively. The performance of the regression model for weight estimation was improved and the effort required for estimating body weight could be reduced as the body volume of Hanwoo was used. From these results obtained, it was concluded that the body volume determined from 3-D of Hanwoo could be used as an effective variable for estimating body weight.

The Effects of Intake Pulsating Flow on Volumetric Efficiency in a Diesel Engine (디젤기관의 흡기 맥동류가 체적효율에 미치는 영향)

  • Kang, H.Y.;Koh, D.K.;Ahn, S.K.
    • Journal of Power System Engineering
    • /
    • v.9 no.2
    • /
    • pp.19-25
    • /
    • 2005
  • Empirical experiments have been undertaken to investigate the effects of Intake Pulsating Flow on volumetric efficiency in a diesel engine. Waves occurs in the manifolds of engine owing to the periodic nature of the induction and exhaust processes caused by piston motion. During induction process, as waves travel both directions, they are reflected and interacted each other and pressure waves are transmitted through it. Hence, the flow become more complex and unsteady flow. These pressure waves act upon intake pulsating flow and affects on volumetric efficiency. In this paper the effects of change in length of induction pipes and wide range of engine speed on volumetric efficiency was examined and evaluated. It was found that volumetric efficiency was affected by intake pulsating flow with engine speed and the pipe length. The results obtained were considered by adopting a theory of wave action.

  • PDF

Fabrication and Characteristics of Film Bulk Acoustic Wave Resonator for Wireless Local Area Network Using AlN Thin Film (AlN 박막을 이용한 5.2GHz Wireless Local Area Network용 박막형 체적탄성파 공진기의 제조 및 특성)

  • 한상철;한정환;이전국;이시형
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.56-56
    • /
    • 2003
  • 최근 정보통신 분야의 급격한 발달로 인하여 무선통신에 사용되는 주파수 영역 또한 계속 높아짐에 따라 대역통과 필터 소자의 삽입 손실, 소비 전력, 크기, MMIC화에 대한 많은 연구가 진행되고 있다 압전 현상을 이용한 박막형 공진기가 이러한 요구를 충족시키고, 현재의 SAW filter를 대체할 소자로 떠오르고 있다. 본 실험에서는 단결정 미세 구조를 만들 수 있고, 압전 효과 또한 우수하며, Surface Micromachining보다 비교적 제조 공정이 간단하고 선택적 에칭이 가능한 Bulk Micromachining을 이용하여 Si$_3$N$_4$ Membrane을 이용한 중심주파수 5.2GHz인 두께 진동모드 Film Bulk Acoustic Wave Resonator(FBAR)를 제작하고 공진기의 고주파 특성을 평가하였다. Membrane구조 형성을 위해 Backside면인 Si$_3$N$_4$, Si은 RIE(Reactive Ion Etching)와 선택적 에칭용액인 KOH로 각각 에칭하여 Membrane을 갖는 구조로 중심주파수 5.2GHz인 두께 진동모드 FBAR를 설계 및 제조하였다. 체적 탄성파 공진 현상은 r.f Magnetron Sputtering법으로 증착한 AIN 압전박막과 Mo전극으로부터 발생 가능하였다. 본 연구에서는 0.9$\mu\textrm{m}$-Si$_3$N$_4$ Membrane을 이용해 FBAR를 제작/평가하고, RIE을 통해 Membrane을 제거해 가면서 공진기의 특성 즉, Quality factor와 유효전기기계결합계수(K$_{eff}$) 및 S parameter특성을 비교 측정해 보았다. 측정해본 결과 Membrane Free일때가 훨씬더 공진 특성이 우수함을 볼 수 있다

  • PDF

Prediction of Explosion Risk for Natural Gas Facilities using Computational Fluid Dynamics (CFD) (전산유체역학시뮬레이션을 이용한 도시가스 설비의 폭발위험성 예측)

  • Han, Sangil;Lee, Dongwook;Hwang, Kyu-Suk
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.606-611
    • /
    • 2018
  • City natural gas is classified flammable hazardous gas and should be secured according to explosion risk assessment determined by Industrial Standard KS C IEC. In this study, leak size, ventilation grade and effectiveness were adopted to the KS C IEC for risk assessment in natural gas supply system. To evaluate the applicability of the computational fluid dynamics (CFD), the risk assessment was studied for four different conditions using hypothetical volume($V_z$) valuesfrom gas leak experiments, KS C IEC calculation, and CFD simulation.

Effective Thermal Conductivities of CE3327 Plain-weave Fabric Composite (CF3327 평직 복합재료의 열전도도)

  • 구남서;문영규;우경식
    • Composites Research
    • /
    • v.15 no.5
    • /
    • pp.27-34
    • /
    • 2002
  • The purpose of this study is to measure and predict the thermal conductivity of CF3327 plain-weave fabric composite made by Hankuk Fiber, Co. An experiment apparatus based on the comparative method has been made to measure the thermal conductivities of the composite material. Its accuracy was proved by measuring the thermal conductivity of graphite which is well-known. Micro-mechanical approaches are useful to assess the effect of parameters such as fiber and matrix material properties, fiber volume fraction and fabric geometric parameters on the effective material properties of composites. In this study, prediction was based on the concept of three dimensional series-parallel thermal resistance network. Thermal resistance network was applied to unit ceil model that characterized the periodically repeated pattern of a plain weave. The numerical results were compared with experimental one and good agreement was observed. Also, the effects of fiber volume fraction on the thermal conductivity of several composites has been investigated.