• Title/Summary/Keyword: 유효 질량

Search Result 156, Processing Time 0.034 seconds

Experimental Evaluation of Design Parameters for TLCD and LCVA (TLCD와 LCVA의 설계파라미터에 대한 실험적 평가)

  • Lee, Sung-Kyung;Min, Kyung-Won;Park, Ji-Hun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.5
    • /
    • pp.403-410
    • /
    • 2009
  • In this paper, damping coefficients and effective masses of tuned liquid-type column dampers were quantitatively evaluated based on experimental results by using system identification technique. First, shaking table tests were performed for two types of tuned liquid-type column dampers. Then, the dynamic characteristics of dampers used in this study were experimentally grasped from harmonic wave excitation testing results of the dampers with various water level. Finally, damping ratios and effective masses of the dampers with varying water level were quantitatively evaluated from minimizing the errors between numerical and experimental results. It was confirmed from system identification results that damping ratio and effective mass are decreased as the water level of dampers is increased.

Calculation Formula for Effective Photon Energy in kV X-ray Beam of Mammography (유방촬영의 kV X-선 빔에서 유효광자에너지에 대한 계산식)

  • Young-On Park;Sang-Hun Lee;Jong-Eon Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.4
    • /
    • pp.507-514
    • /
    • 2023
  • The purpose of this study is to find a formula that can easily calculate the effective photon energy in the X-ray beam of mammography. The tube voltage measured for each set tube voltage was obtained using the X2 MAM Sensor. The mass attenuation coefficient for aluminum of the aluminum filter was obtained from the half value layer measurement from each measured tube voltage X-ray beam. The mass attenuation coefficient of aluminum obtained from each measured tube voltage X-ray beam was corresponded to the mass attenuation coefficient of aluminum for each photon energy obtained from NIST. The photon energy corresponding to the matching mass attenuation coefficient was determined as the effective photon energy. The formula for calculating the determined effective photon energy was obtained by polynomial matching of the effective photon energy for each tube voltage in the Origin pro 2019b statistical program as y = 28.98968-1.91738x + 0.07786x2-0.000946717x3. Here, x is the measuring tube voltage and y is the effective photon energy. The calculation formula of the effective photon energy of the mammography X-ray beam obtained in this study is considered to be very useful in obtaining the interaction coefficient between the X-ray beam and a certain substance in clinical practice.

Determination of the Effective Energy of X-Ray Beam Using Optically Stimulated Luminescent nanoDot Dosimeters (광자극형광나노닷선량계를 사용한 X선 빔의 유효에너지 결정)

  • Kim, Jongeon;Lee, Sanghun
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.6
    • /
    • pp.375-379
    • /
    • 2015
  • The purpose of this study is to determine the effective energy of a polyenegetic X-ray beam. The half value layer(HVL) of aluminum for 80 kVp X-ray beam was measured by using optically stimulated luminescent nanoDot dosimeters(OSLnDs). The linear attenuation coefficient(${\mu}$) was calculated using the measured HVL. And the mass attenuation coefficient(${\mu}/{\rho}$) was obtained by dividing the linear attenuation coefficient by the density(${\rho}$) of aluminum. The effective energy($E_{eff}$) of the obtained mass attenuation coefficient was determined using data of the X-ray mass attenuation coefficients for photon energies of aluminum given by National Institute of Standards and Technology(NIST). As a result, the HVL value is 2.262 mmAl. The ${\mu}$ value is $3.06cm^{-1}$. The ${\mu}/{\rho}$ value is $1.114cm^2/g$. And the $E_{eff}$ value was determined at 29.79 keV.

Derivation of Photon Energy Fluence and Mass Energy Absorption Coefficient for 1 Gy Absorbed Dose of Water in Brachytherapy using Ir192 Source (Ir192 선원을 이용한 근접치료에서 물 흡수선량 1 Gy에 대한 광자에너지 플루언스와 질량에너지흡수계수 유도)

  • Kim, Jong-Eon;Ahn, Il-Hoon
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.1
    • /
    • pp.61-66
    • /
    • 2022
  • The purpose of this study is to derive photon energy fluence and mass energy absorption coefficient for 1 Gy of absorbed dose of water in brachytherapy using an Ir192 source. From the radiotherapy physics written by Khan, the half-value of lead for the gamma ray beam of the Ir192 source was obtained. The linear attenuation coefficient and the mass attenuation coefficient were calculated from the obtained half-value layer of lead. By matching the calculated lead mass attenuation coefficient with the NIST mass attenuation coefficient data, the photon energy of the matching mass attenuation coefficient was determined as the effective energy. By matching the determined effective energy with the photon energy of the NIST data on the mass energy absorption coefficient of water, the mass energy absorption coefficient of water was obtained as 0.03273 cm2/g(32.73 cm2/kg). The photon energy fluence was calculated as 0.03055 J/cm2 by dividing the obtained mass energy absorption coefficient (32.73 cm2/kg) by the absorbed dose of water 1 Gy.

The density-of-states effective mass and conductivity effective mass of electrons and holes in relaxed or strained Ge and ${Ge_{0.8}}{Sn_{0.2}}$ (완화된 또는 응력변형을 겪는 Ge과 ${Ge_{0.8}}{Sn_{0.2}}$에서 전자와 정공의 상태밀도 유효질량과 전도도 유효질량)

  • 박일수;전상국
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.8
    • /
    • pp.643-650
    • /
    • 2000
  • Density-of-states effective mass(m*$_{d}$) and conductivity mass(m*$_{c}$)for Ge and Ge$_{0.8}$/Sn$_{0.2}$ are obtained by using 8$\times$8 k.p and strain Hamiltonians. It is shown that m*$_{d}$ and m*$_{c}$ for electrons in Ge/Ge$_{0.8}$/Sn$_{0.2}$(001) and Ge$_{0.8}$/Sn$_{0.2}$/Ge(001) are much smaller than those for electrons in relaxed Ge mainly due to the increase of interaction caused by the strain between the conduction band and valence bands at the $\Gamma$ point. The lift of degeneracy in Ge/Ge$_{0.8}$/Sn$_{0.2}$(001) and Ge/Ge$_{0.8}$/Sn$_{0.2}$(001) makes m*$_{d}$ and m*$_{c}$ for holes smaller than those in relaxed Ge and results in the decrease of the interband scattering as well as interband scattering. The decrease of the interband scattering is more obvious in Ge/Ge$_{0.8}$/Sn$_{0.2}$(001) because of its large splitting energy between the heavy hole and light hole band. Therefore, Ge/Ge$_{0.8}$/Sn$_{0.2}$(001) is expected to be good candidate for the development of ultra high-speed CMOS device.CMOS device.eed CMOS device.CMOS device.

  • PDF

Improvement of Spectrum Detection Algorithm for Mass Spectrometer (질량분석기를 위한 스펙트럼 검출 알고리즘의 개선)

  • Lee, Young Hawk;Choi, Hun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.1
    • /
    • pp.47-54
    • /
    • 2019
  • An improved method of spectrum detection algorithm for mass spectrum analysis system is proposed. In the conventional spectrum detection algorithm that utilizes the results of the linear approximation and quadratic curve fitting on the ion signal block of each mass index, it is possible to reduce the detection error in the mass spectrum detection by further improving the condition of eliminating the invalid ion signals. Also, the proposed method can reduce the estimation error of the peak value of the mass spectrum by using the result of quadratic curve fitting for the effective ion signal block in which the peak position error is corrected. To evaluate the effectiveness of the proposed method, computer simulations were carried out step by step using the measured ion signal. Also, by comparing the rate of false detection for several inputs, the proposed method showed better detection performance than the conventional method.

Additive Noise Reduction Algorithm for Mass Spectrum Analyzer (질량 스펙트럼 분석기를 위한 부가잡음제거 알고리즘)

  • Choi, Hun;Lee, Imgeun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.1
    • /
    • pp.33-39
    • /
    • 2018
  • An additive noise reduction algorithm for a mass spectrum analyzer is proposed. From the measured ion signal, we first used an estimated threshold from the mode of the measured signal to eliminate background noises with the white Gaussian characteristics. Also, a signal block corresponding to each mass index is constructed to perform a second order curve fitting and a linear approximation to signal block. In this process, the effective signal block composed of only the ion signal can be reconstructed by removing the impulsive noises and the sample signals which are insufficient to be viewed as normal ion signals. By performing curve fitting on the effective signal block, the noise-free mass spectrum can be obtained. To evaluate the performance of the proposed method, a simulation was performed using the signals acquired from the development equipment. Simulation results show the validity of the threshold setting from the mode and the superiority of the proposed curve fitting and linear approximation based noise canceling algorithm.

The Subband Energy and The Envelope Wave Function of The Semiconductor Superlattice (반도체 초격자의 Subband 에너지와 Envelope 함수)

  • 김영주;손기수
    • Journal of the Korean Vacuum Society
    • /
    • v.1 no.1
    • /
    • pp.60-66
    • /
    • 1992
  • The electronic subband structure and the envelope wave function for three types of superlattices are calculated with a new method. Comparison of the results of this method with those of other methods has proved the validity of this method. In particullas, the results of saw-toothed superlattices show that the change of the effective mass with position must be considered. Therefore this method can be easily applied to arbitrily shaped superlattices and multiple quantum well structures.

  • PDF

<100>, <110>, <111>방향 Si, InAs Nanowire nMOSFETs 의 성능 연구

  • Jeong, Seong-U;Park, Sang-Cheon
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.357-361
    • /
    • 2016
  • Si와 InAs 두 가지 채널 물질을 가지고 3가지 수송 방향 <100>, <110>, <111>으로 변화시키며 각각의 Nanowire nMOSFETs을 가지고 ballistic quantum transport simulation을 진행하였다. 각각의 경우에 대해 E-k curve를 구한 다음에 band curvature로 캐리어의 유효질량을 계산하고, 이를 통해 MOSFET의 전류 세기를 결정짓는 DOS와 carrier injection velocity를 구하여 어떤 경우에 가장 높은 ON-current를 흐르게 하는지 확인해 보았다. 하지만 예상과 달리 나노와이어의 직경이 1.4nm으로 매우 작기 때문에 valley-splitting이 일어나 Si<110>의 경우에 가장 작은 캐리어 유효 질량을 갖고 있는 사실을 확인할 수 있었다. 결론적으로 Si<100>의 경우에 trade-off 관계에 있는 DOS와 carrier injection velocity가 6가지 경우 중 최적의 조합을 가짐으로써 가장 높은 ON-current를 흐르게 하였다.

  • PDF