• Title/Summary/Keyword: 유효 스터럽

Search Result 13, Processing Time 0.023 seconds

Predicting Actual Strength of Shear Reinforcement Using Effective Stirrup Concept (유효 스터럽 개념을 이용한 전단보강근의 강도 예측)

  • Kwon, Ki-Yeon;Yang, Jun-Mo;Lee, Joo-Ha;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.1
    • /
    • pp.99-107
    • /
    • 2008
  • This paper presents the prediction of the actual strength of shear reinforcement on the basis of the concept of effective stirrups. The prediction method incorporating the shear cracking angle was proposed with the estimation by the Modified Compression Field Theory (MCFT). To check the validity of the method, discussion of the current ACI 318-05 and comparison of 39 test results from the literature including author's retrospective test data were made. The influencing factors of compressive concrete strength and type of shear-reinforcement were also investigated. Furthermore, two full-scale beam specimens shear-reinforced with headed bars were tested to demonstrate the applicability of the proposed method.

An Experimental Study on the Shear Strength of Reinforced High Strength Concrete Beams without Stirrups (스터럽이 없는 고강도 철근콘크리트보의 전단강도 특성에 관한 실험적 연구)

  • 김진근;박연도
    • Magazine of the Korea Concrete Institute
    • /
    • v.5 no.1
    • /
    • pp.103-113
    • /
    • 1993
  • 일반적으로 스터럽이 없는 철근콘크리트 보의 전단강도는 콘크리트 압축강도, 주철근비, 전단스팬비 및 보 유효깊이에 좌우된다는 것이 많은 연구를 통하여 밝혀지고 있다. 따라서, 본 연구에서는 고강도 콘크리트를 사용한 철근콘크리트 보의 거동 및 전단강도 특성을 분석하기 위하여 주철근비, 전단스팬비 및 보 유효깊이를 변수로 두고 총 22개의 단철근 보 실험체를 제작하여 실험을 수행하였다. 실험결과는 ACI규준식, Zsutty식 및 Bazant & Kim식의 예측값들과 함께 비교, 분석되었는데, ACI 규준식은 주철근비 및 전단스팬비의 효과를 과소평가할 뿐만 아니라 유효깊이가 915mm인 큰 보의 경우 안전측이 아니어서 이에 대한 고려가 필요할 것으로 판단된다. Zsutty식은 주철근비의 효과를 적절하게 평가하는 것으로 나타났으며, Bazant & Kim 식은 유효깊이 증가에 따른 전단강도 감소 경향을 잘 예측하는 것으로 나타났다. 또한, 다른 연구자들의 실험치와 비교, 분석해본 결과 주철근비 및 전단스팬비의 효과는 콘크리트 압축강도 수준에 따라 큰 변화가 없는 것으로 판단된다.

Effect of Concrete Strength on Stirrup Effectiveness in Shear Behavior of Concrete Beams (보의 전단거동에서 콘크리트 압축강도가 스터럽 유효성에 미치는 영향)

  • 이영재;서원명;김진근;박찬규
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.6
    • /
    • pp.173-182
    • /
    • 1996
  • An experimental research was carried out to investigate the effect of thc compressive strength of concrete on the stirrup effectiveness in shear behavior of concrete beams. For this purpose. total 24 beams of section dimension of $300{\times}600mm$ were tested: 4 specimens without web reinforcement and 20 specimens with web reinforcement in the form of vertical stirrups. Main variables were two levels(norma1 and high strength) of the compressive strength of concrete and six types of t h e shear rcinfor.cement ratios. Prior to experiment, for given sections and assumed material constants, the reference shear reinforcement ratio(${\rho}_vACI$) which leads to the flexure failure using the provisions of the ACI Building Code(AC1 318-95) was calculated. and the shear reinforcement ratios were relatively selected from the value of ${\rho}_vACI$. From test results, it was shown that thc safety factor of ACI eyuation for p1,ediction of shear strength was decreased with increasing the compressive strength of concrete in beams without stirrups. However. it was observed that as the amount of' stirrup is increased, the safety factor for high strength conci,ete beams with high stirrup ratio is ensured more than that for normal strength concrete beams. Therefore i t appears that the stirrup effectiveness of high strength concrete beams is greater than that of normal strength concrete beams.

An Experimental Study on the Stirrup Effectiveness in Reinforced Concrete Beams (철근콘크리트보의 스터럽 효과에 관한 실험적 연구)

  • Lee, Young-Jae;Lee, Yoon-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.1
    • /
    • pp.205-215
    • /
    • 2005
  • The main objective of this study is to investigate the behavior of NSC and HSC beams with stirrups. Main variables were the concrete compressive strength and amount of vertical stirrups. A total of 24 beams was tested; 4 beams without web reinforcement and 20 beams with web reinforcement in the form of vertical stirrups. Main variables were 2 different compressive strengths of concrete of 26.9MPa and 63.5MPa, 5 different spacing of stirrups of 200, 150, 120, 100 and 90mm. Therefore, the results were compared with the strengths predicted by the equations of ACI code 318-99 and other researchers. The shear reinforcement ratio, where the test beams were failed simultaneously under flexure and shear, were $0.63{\rho}_{vmax}$ for NSC beams and $0.53{\rho}_{vmax}$ for HSC beams, respectively. The ACI code equation was found to be very conservative for shear design.

Repeated Loading Test of Shear-Critical Reinforced Concrete Beams with Headed Shear Reinforcement (헤디드 바를 전단철근으로 사용한 철근콘크리트 보의 전단거동에 관한 반복하중 실험)

  • Kim, Young-Hoon;Lee, Joo-Ha;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.47-56
    • /
    • 2006
  • The repeated loading responses of four shear-critical reinforced concrete beams with two different shear span-to-depth ratios, were studied. One series of beams was reinforced using pairs of bundled stirrups with $90^{\circ}$ standard hooks, haying free end extensions of $6d_b$. The companion beams contained shear reinforcement made with larger diameter headed bars anchored with 50mm diameter circular heads. A single headed bar had the same area as a pair of bundled stirrups and hence the two series were comparable. The test results indicate that beams containing headed bar stirrups have a superior performance to companion beams containing bundled standard stirrups with improved ductility, larger energy absorption and enhanced post-peak load carrying capability. Due to splitting of the concrete cover and local crushing, the hooks of the standard stirrups opened resulting in loss of anchorage. In contrast, the headed bar stirrups did not lose their anchorage and hence were able to develop strain hardening and also served to delay buckling of the flexural compression steel. Excellent load-deflection predictions were obtained by reducing the tension stiffening to account for repeated load effects.

Flexural-Shear Behavior of Beam Members according to the Spacing of Stirrups and Tension Steel Ratio (스터럽간격과 인장철근비에 따른 고강도 콘크리트 보의 파괴거동)

  • Park, Hoon-Gyu;An, Young-Ki;Jang, Il-Young;Choi, Goh-Il
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.4
    • /
    • pp.513-521
    • /
    • 2003
  • Existing tests results have shown that confining the concrete compression region with closed stirrups improves the ductility and load-carrying capacity of beams. However, only few researchers have attempted to utilize the beneficial effects of the presence of these stirrups in design. This paper presents the result of experimental studies on the load-deflection behavior and the strengthening effect of laterally confined structural high-strength concrete beam members in which confinement stirrups have been introduced into the compression regions. Fifteen tests were conducted on full-scale beam specimens having concrete compressive strength of 41 MPa and 61 MPa. Different spacing of stirrups(0.25∼1.0d) and amount of tension steel($0.55{\sim}0.7{\rho}_b$) as major variables were investigated. And also, this study present an appropriate shear equation for decision of ultimate failure modes of high-strength concrete beams according to stirrup spacing. The equation is based on interaction between shear strength and displacement ductility. Prediction of failure mode from presented method and comparison with test results are also presenteded

Experimental Study for GFRP Reinforced Concrete Beams without Stirrups (스터럽이 없는 GFRP 보강근 콘크리트 보에 대한 실험적 연구)

  • Ko, Seong-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.2
    • /
    • pp.21-29
    • /
    • 2014
  • This paper evaluates the shear strength, behavior and failure mode of reinforced concrete beams with deformed GFRP reinforcing bar. Four concrete beam specimens were constructed and tested. It was carried out to observe failure behavior and load-deflection of simply supported concrete beams subjected to four-point monotonic loading. In order to eliminate of the uncertainty by the shear reinforcements, any stirrups were not used. Variables of the specimens were shear span-depth ratio, effective reinforcement ratio. The dimensions of specimen is 3,300 or $1,950mm{\times}200mm{\times}240mm$. Clear span and shear span were 2,900mm, 1,000mm respectively. Shear span-depth ratios were 6.5 and 2.5. Effective ratios of Longitudinal GFRP reinforcing bar were $1.126{\rho}_{fb}$, $2.250{\rho}_{fb}$, $3.375{\rho}_{fb}$ and $0.634{\rho}_{fb}$. All beam specimens were broken by diagonal-tension shear and the ACI 440.1R, CSA S806 and ISIS, which was used to design test beams, showed considerable deviation between prediction and test results of shear strengths.

The Estimation on the Stirrup Effectiveness of Reinforced High Strength Concrete Beams (고강도 철근콘크리트 보에서 스터럽 유효성의 평가)

  • 김진근;박찬규;이영재;서원명
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.267-272
    • /
    • 1995
  • The objective of this study is to investigate the effect of concrete strength on the stirrup effectiveness factor(K) of reinforced concrete beams with stirrup based on previous test results(a/d$\geq$2.5). In the procedure of the estimation of K, it was assumed that the ultimate shear strength for beams without stirrup is equal to the concrete contribution to shear strength for beam with stirrup. A model equation for calculation the stirrup of compressive strength of concrete. It was shown that the stirrup effective factor of compressive strength of concrete. It wah shown that the stirrup effective factor is greater than 1.0 up to compressive strength 85MPa. Therefore the current ACI Code equation for predicting the shear strength and the stirrup effectiveness factor of 1.0 is conservative for nomal and high stength concrete beams with stirrup.

  • PDF

Evaluation of the Lap Splice Strengths of High Strength Headed Bars by Flexural Tests of RC Beams (RC 보의 휨실험을 통한 고강도 확대머리철근의 겹침이음 강도 평가)

  • Lee, Ji-Hyeong;Jang, Duck-Young;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.247-255
    • /
    • 2022
  • In this paper, a bending test was conducted on beams with two lap splice details when the effective depth of tensile high strength headed bars overlapped is the same and different. Through bending test, the lap splice performance of the high-strength headed bars was evaluated, and the applicability of the KDS-2021 design formula was evaluated. In the LS specimens with lap splice details where the high strength bars had the same effective depth, all specimens with 1.3 times or more of the development length of the KDS-2021 equation and 1 times or more of the ACI318-19 had the flexural failure mode after the ductile behavior to ensure sufficient lap splice performance. For specimens with details of lap joints between headed bars with different effective depth, when lap splice length is calculated by the KDS-2021 formula, the flexural stress may be transmitted so that the flexural strength at the cross section with the large effective depth and the cross section with the small effective depth becomes similar.

Evaluation of Structural Performance of Precast Modular Pier Cap (프리캐스트 모듈러 피어캡의 구조성능 평가)

  • Kim, Dong Wook;Shim, Chang Su
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.1
    • /
    • pp.55-63
    • /
    • 2015
  • Prefabrication technologies are making bridge construction safer and less disruptive to the environment and traveling public, making bridge designs more constructible and, improving the quality and durability by shifting site work to a more controllable environment. Modular bridge substructures with concrete-filled steel tube (CFT) piers and composite pier caps were suggested to realize accelerated bridge construction. The precast segmental pier cap consists of a composite pier table and precast prestressed segments on the table. The pier table has embedded steel section to mitigate stress concentration at the connection by small tubes. Each bridge pier has four or six CFT columns which connect to the pier cap. Shear strength of the pier cap was obtained by extending vertical reinforcing bars from the table to the precast segment. Transverse prestressing was introduced to control tensile stresses by service loadings. Structural performance of the proposed modular system was evaluated by static tests. Design requirements of the composite pier cap were satisfied by continuous reinforcing bars and prestressing tendons. Standardized modular substructures can be effectively utilized for the fast replacement or construction of bridges.