• Title/Summary/Keyword: 유효전단응력도

Search Result 176, Processing Time 0.029 seconds

Shear Strength Estimation of Clean Sands via Shear Wave Velocity (전단파 속도를 통한 모래의 전단강도 예측)

  • Yoo, Jin-Kwon;Park, Duhee
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.9
    • /
    • pp.17-27
    • /
    • 2015
  • We perform a series of experimental tests to evaluate whether the shear strength of clean sands can be reliably predicted from shear wave velocity. Isotropic drained triaxial tests on clean sands reconstituted at different relative densities are performed to measure the shear strength and bender elements are used to measure the shear wave velocity. Laboratory tests reveal that a correlation between shear wave velocity, void ratio, and confining pressure can be made. The correlation can be used to determine the void ratio from measured shear wave velocity, from which the shear strength is predicted. We also show that a unique relationship exists between maximum shear modulus and effective axial stress at failure. The accuracy of the equation can be enhanced by including the normalized confining pressure in the equation. Comparisons between measured and predicted effective friction angle demonstrate that the proposed equation can accurately predict the internal friction angle of granular soils, accounting for the effect of the relative density, from shear wave velocity.

Analysis of an Actual Slope Failure in the Residual Soil by Suction Stress Based Effective Stress (흡수응력에 기반한 유효응력에 의한 실제 잔류토 사면 붕괴의 해석)

  • Oh, Seboong;Lu, Ning;Park, Young Mog;Lee, Junsuk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.3C
    • /
    • pp.113-120
    • /
    • 2012
  • An actual slope failure was analyzed in residual soils at Jinju. Due to rainfall infiltration, the safety factor decreases in the unsaturated layers, since the effective stress and shear strength decrease. In this study, the effective stress is based on suction stress using soil water retention curve. Unsaturated properties were evaluated on soil water retention curve, hydraulic conductivity and shear strength with samples from the site. After infiltration analysis of unsaturated flow under the actual rainfall, the distribution of pore water pressure could be calculated in the slope layers. In the stress field of finite elements, an elastic analysis calculated total stress distribution in the layers and also shear stresses on the slip surface using elastic model. On the slip surface, suction stress and effective stress evaluated the shear strength. As a result, the factor of safety was calculated due to rainfall, which could simulate the actual slope failure. In particular, it was found that the suction stress increases and both the effective stress and the shear strength decrease simultaneously on the slip surface.

Numerical Modeling of Sloping Ground under Earthquake Loading Using UBCSAND Model (UBCSAND모델을 이용한 사면의 동적거동해석)

  • Park Sung-Sik;Kim Young-Su;Kim Hee-Joong
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.4
    • /
    • pp.61-71
    • /
    • 2006
  • A numerical procedure is presented fur evaluating seismic liquefaction on sloping ground sites. The procedure uses a fully coupled dynamic effective stress analysis with a plastic constitutive model called UBCSAND. The model was first calibrated against laboratory element behavior. This involved cyclic simple shear tests performed on loose sand with and without initial static shear stress. The numerical procedure is then verified by predicting a centrifuge test with a slope performed on loose Fraser River sand. The predicted excess pore pressures, accelerations and displacements are compared with the measurements. The results are shown to be in good agreement. The shear stress reversal patterns depend on static and cyclic shear stress levels and are shown to play a key role in evaluating liquefaction response in sloping ground sites. The sand near the slope has low effective confining stress and dilates more. When no stress reversals occur, the sand behaves in a stiffer manner that curtails the accumulated downslope displacements. The numerical procedure using UBCSAND can serve as a guide for design of new soil structures or retrofit of existing ones.

Unsaturated Effective Stress Based on Water Retention Characteristics for Triaxial Tests of Silty Sand (실트질 사질토의 삼축시험 시 함수특성에 따른 불포화 유효응력)

  • Lee, Younghuy;Oh, Seboong;Baek, Seungcheol;Kim, Sangmin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.1
    • /
    • pp.69-75
    • /
    • 2013
  • Suction stress is evaluated from soil water retention curves in order to deduce effective stress in unsaturated soils. $K_0$ consolidated triaxial tests were performed for silty sand to interpret effective stress in consolidation and shearing of unsaturated soils. Suction stresses from both consolidation stress and shear strength in triaxial tests were compared with those from soil water retention curves. The effective stresses on consolidation and shear strength are on each unique line, which are the same as that of the saturated case. It was found that the effective stress from soil water retention curves agrees with those from consolidation and shear strength in triaxial tests.

The Relationship Between Effective Stress and Shear Strength of Weathered Granite Soils Based on Matric Suctions (모관흡수력에 따른 화강풍화토의 유효응력과 전단강도의 관계)

  • Lee, Younghuy;Oh, Seboong;Kim, Kwanghyun;Seong, Yulho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.4
    • /
    • pp.45-51
    • /
    • 2012
  • The shear strength of weathered granite soils under unsaturated condition was evaluated by $K_0$ consolidated triaxial tests. Various matric suctions in the unsaturated triaxial tests were applied using suction-controlled triaxial test apparatus for weathered granite soils obtained in Daegu. Soil water characteristic curve (SWCC) laboratory tests for drying and wetting procedure were performed and van Genuchten curves were fitted by experimental results. The contribution of matric suction in unsaturated soils is directly correlated to effective stress and evaluated from SWCCs. The effective stresses were estimated from these SWCCs and the relationship between effective stress and unsaturated shear strength was determined. In the effective stress description, the unsaturated shear strength with respect to various suctions indicates unique relationship and almost the same as that of the saturated envelope.

Regularization Length in Single Plane Cable-stayed Concrete Bridge (1면 케이블 콘크리트 사장교의 응력 불균일 영역길이)

  • Kang, Ho-Jun;Jang, Jae-Youp;Kim, Gwang-Soo;Lee, Hwan-Woo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.10-13
    • /
    • 2010
  • 세그먼트 자중 등에 의한 휨모멘트와 케이블 수직압축력에 의한 합성응력이 발생되고 바닥판 경간비가 변하는 사장교의 시공단계에서는 전단지연의 영향범위가 다를 수 있다. 이 연구에서는 1면 케이블 콘크리트 박스 사장교를 대상으로 시공단계시 보강형에 고려되어야 할 합성응력에 의한 유효플랜지폭을 분석하였다. 그 결과 바닥판 경간비가 0.38 이하의 범위에서 보강형의 전폭을 유효플랜지폭으로 적용할 수 있는 것으로 해석되었다. 따라서 시공단계시 변화되는 바닥판 경간비의 크기에 관계없이 전폭을 유효플랜지폭으로 반영하는 실무관행은 안전측 설계가 되지 못할 수 가 있다. 바닥판 경간비가 작아짐에 따라서는 전폭과 캔틸레버 구조계로 유효플랜지폭을 결정하는 것이 타당하다. 이 연구에서는 수직력에 대한 도로교설계기준의 유효플랜지폭 규정에 대한 평가도 수행하였다.

  • PDF

Study on Critical_Allowable Shear Stress of Filling Rocks With Mattress Revetment (호안용 매트리스내 채움재의 한계_허용 전단응력에 관한 연구)

  • Bae, Sang-Soo;Lee, Seung-Yoon;Jee, Hong-Kee
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.2
    • /
    • pp.137-147
    • /
    • 2008
  • Critical and allowable shear stress acting on the mattress revetment, is presented in this study. First of all, shear stress at each spot is computed when the hydraulic power act on the waterway. Secondly, median diameter of the filling rocks is computed using shear stress and Shields coefficient which are used to decide the critical motion of the particle. Finally, the range of critical and allowable shear stress is estimated which meet the particle stability and indicated that the mattress is a stable hydraulic structure in comparison with the riprap. Therefore the required median diameter of riprap is three times higher than that of mattress. Contrarily, this study also analyzed that resisting power of mattress to shear stress is three times higher than that of riprap on the same size.

Liquefaction Strength of Shelly Sand in Cyclic Simple Shear Test (반복단순전단 시험에 의한 패각질 모래의 액상화 강도)

  • Yoon, Yeowon;Yoon, Gillim;Choi, Jaekwon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.6
    • /
    • pp.69-76
    • /
    • 2007
  • The sands which use for soil improvement of soft ground at coastal area contain more or less amount of shells. In this research the effects of shell contents on the liquefaction resistance of the shelly sand were studied. NGI cyclic simple shear tests were performed for the shell-sands with shell contents of 0%, 5%, 10%, 20%, 30% under the effective vertical stress of 50kPa, 100kPa and 150kPa for 40% and 55% of relative density, respectively. Cyclic simple shear test results showed that for the low effective vertical stress, the liquefaction resistance increased rapidly with increase of shell contents in both 40% and 55% relative density. On the other hand, for the high effective vertical stress, the liquefaction resistance increased slightly in 40% relative density and was almost same in 55% relative density. Liquefaction resistance decreased with increasing effective vertical stress for both 40% and 55% relative density. In the same effective vertical stress and shell contents, liquefaction resistance increased with the increase of relative density.

  • PDF

Embankment and Excavation Behaviour with Shear Parameters of Soft Clayey Soil in FEM (점성토의 유한요소해석에서 전단파라미터에 따른 성토 및 굴착 거동)

  • Kim, Byung Il;Choi, Chanyong;Hong, Kang Han;Han, Sang Jae
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.2
    • /
    • pp.5-17
    • /
    • 2018
  • In this study, the in-situ stress, strength and stress-strain characteristics with shear parameters (UU, CU, ${\bar{CU}}$) are analytically evaluated and the stability analyses are carried out under loading/unloading conditions. The in-situ stress and the stress-strain behaviour may become different according to input shear parameters in finite element analyses with construction step, Especially, if the internal friction angle in Mohr-Coulomb model is set to zero, the in-situ stress and the stress-strain behaviour might not be properly predicted. The results from CU parameter of total stress analysis have no significant difference with the results from CU of effective stress analysis. Therefore, in the numerical analysis for soft ground, CU parameters can be applied to predict in-situ stress and stress-strain behaviors. In addition, the calculation method was proposed to determine the shear parameter of Mohr-Coulomb model, which is corresponding to the shear strength equivalent to that of in-situ soil.

The effects of End Platens on Effective Stresses in Resonant Column (RC) Specimens during Consolidation (공진주 시험기 단부가 압밀중인 시료의 유효응력에 미치는 영향)

  • Bae, Yoon-Shin
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.29-42
    • /
    • 2008
  • The objective of this study is to investigate the effects of rigid end platens on effective stresses in soil mass during consolidation. The friction between the teeth of top cap/base pedestal and the specimen during consolidation decreases the radial and tangential effective stresses in RC specimens. However, it is unpractical to measure the effective stresses in the soil specimen. Two approaches were used to evaluate the state of stress in RC specimens during consolidation. First, careful measurements were made of small strain shear modulus, $G_{max}$ in specimens with carefully controlled void ratios and stress histories, to infer the state of stress. And second, a finite element analysis was performed to analytically evaluate the effect of various soil parameters on the state of stress in RC specimens during consolidation. By combining these experimental and analytical results, an example was performed to predict the average state of stress in RC specimens during consolidation.