• 제목/요약/키워드: 유효균열진전력

검색결과 2건 처리시간 0.014초

균열가지 효과를 고려한 균열 성장 지연 거동 예측 (변동하중하에서의 피로거동) (The Prediction of Crack Growth Retardation Behavior by Crack Tip Branching Effects (Fatigue Behavior in variable Loading Condition))

  • 권윤기
    • 한국생산제조학회지
    • /
    • 제8권2호
    • /
    • pp.126-136
    • /
    • 1999
  • We studied on crack growth retardation in single overloading condition. Crack tip branching which as the second mechanism on crack growth retardation was examined. Crack tip branching was observed to kinked type and forked type. It was found that the branching angle range was from 25 to 53 degree. The variations of crack driving force with branching angle were calculated with finite element method The variation of {{{{ KAPPA _I}}}}, {{{{ KAPPA _II}}}} and total crack driving force(K) were examined respectively So {{{{ KAPPA _I}}}}, {{{{ KAPPA _II}}}} and K mean to mode I, II and total crack driving force. Present model(Willenborg's model) for crack growth retardation prediction was modified to take into consideration the effects of crack tip branching When we predicted retardation with modified model. it was confirmed that predicted and experimental results coincided with well each other.

  • PDF

변동하중하에서의 피로크랙 지연현상과 지연기구에 관한 연구 - 균열성장 지연현상에 미치는 균열 가지의 영향 - (A Study on Fatigue Crack Retardation and Retardation Mechanism in Variable Loading)

  • 송삼홍;권윤기
    • 한국정밀공학회지
    • /
    • 제14권6호
    • /
    • pp.83-89
    • /
    • 1997
  • In order to study on fatigue crack retardation and retardation mechanism in variable loading, the effects of crack tip branching in fatigue crack growth retardation were examined. The characteristics of crack tip banching behavior was considered to micro structure. It was examined that the variation of crack tip branching angle. Crack tip branching was observed along the grain boundary of ferrite and pearlite structure. It was found that the abanching angle ranges from 25 to 53 degrees. Using the finite element method, the variable of crack driving force to branching angle was examined. The effective crack driving force ( $K_{\eff}$ ) decreased as the braching angle increases. The rate of decrease was 33% for the kinked type and 29% for the forked one. It was confirmed that the effect of crack tip branching is a very important factor in fatigue crack growth retardation. Therefore, crack branching effect should be considered building the hypoth- etical model to predict crack growth retardation.

  • PDF