본 논문은 인터넷 둥을 통해 유입되는 유해 이미지를 그 특징을 이용하여 무해, 선정, 유해(누드), 심한 유해(성인물)과 같은 이미지 컨텐츠의 등급으로 선별하기 위한 이미지 특징 추출 방법과 이미지분류 기술을 제시한 것이다. 이를 위해 본 논문에서는 입력 이미지에서 유해 정보임을 인식하기 위한 피부 영역 검출 기법을 제시한다. 또한, 노이즈를 줄이고 효과적으로 유해성 정도를 추출하기 위해 관심 영역을 설정하고 그 관심 영역 안에서만 특징을 정의하는 관심 영역 검출 알고리즘을 제안한다. 그리고 이미지를 4 종류의 등급으로 선별하기 위해 유해 이미지 분류 모델을 생성하는 다중 SVM 학습 기법과 생성된 분류 모델을 이용하여 입력 데이타의 유해 등급을 분류하는 다중 SVM 분류 기법을 제시한다. 특히 피부색 영역 이미지의 형태 정보와 피부색 비율 이미지의 색깔정보를 합하여 만든 피부색 가능성 분포 이미지를 제시하고, 이 피부색 가능성 분포 이미지를 축소하여 학습 과정에서 특징 분류를 위해 이용하는 이미지 특성 벡터를 제안한다. 마지막으로 본 논문에서 제안한 유해 이미지 등급 선별 기법을 적용한 실험 결과와 이미지의 유해 둥급 분류에 대한 판별 성능을 평가한다.
인터넷의 급속한 발달과 이미지 콘텐츠 개발 기술의 발달로 현재 누구나 쉽게 이미지 콘텐츠의 공유 및 배급이 용이해졌다. 그러나 이로 인해 누드나 포르노와 같은 불건전한 유해 이미지들의 접근 역시 쉬워지고 있다. 특히, 스마트 폰이나 스마트 TV 등 멀티미디어 기능이 가능한 휴대장치 및 단말기의 비약적인 발전으로 인하여, 언제 어디서나 우리들은 유해 이미지의 노출되어 있다. 따라서 유해 이미지 시청이 적당하지 않은 연령층까지 무방비 상태에 놓여 있기 때문에 이를 막을 수 있는 시급한 대책이 요구되고 있다. 본 논문에서는 이중 피부 화소 검출에 이용하여 인체 영역 검출해내고 이것을 이용하여 유해 이미지 분류를 위한 방법을 제안하고자 한다. 일반적으로 피부 화소 검출 기법은 오차율을 가지고 있기 때문에 정확한 검출이 힘들다. 따라서 우리는 검출에 대한 강도를 조절하여 이중으로 피부 화소를 검출하여 좀더 정확한 피부 영역을 획득한다. 또한 기존의 방법들은 대체로 일차적인 피부 영역 검출에 초점을 둔 반면, 유해 판별의 주된 기준이 되는 가슴이나 성기, 엉덩이 등을 좀 더 중점적으로 찾으려 하지 않았다. 따라서 본 논문에서는 검출된 피부 영역에서 유해 부위를 좀 더 집중적으로 찾아 유해 판별 성능을 높이는 방법을 제안하고 실험으로 증명을 하고자 한다.
최근 유해 네트워크 트래픽을 탐지하기 위해 머신러닝 기법을 활용하는 다양한 방법론들이 주목을 받고 있다. 이 논문에서는 컨볼루션 신경망 (Convolutioanl Neural Network)을 기반으로 유해 네트워크 트래픽을 분류하는 기법을 소개하고 그 성능을 평가한다. 이미지 처리에 강한 컨볼루션 신경망의 활용을 위해, 네트워크 트래픽의 주요 정보를 규격화된 이미지로 변환하는 방법을 제안하고, 변환된 이미지를 입력으로 컨볼루션 신경망을 학습시켜 유해 네트워크 트래픽의 분류를 수행하도록 한다. 실제 네트워크 트래픽 관련 데이터셋을 활용하여 이미지 변환 및 컨볼루션 신경망 기반 네트워크 트래픽 분류 기법의 성능을 검증하였다. 특히, 다양한 컨볼루션 신경망 기반 네트워크 모델 구성에 따른 트래픽 분류 기법의 성능을 평가하였다.
인터넷의 발전과 함께 유해사이트의 급속한 증가로 유해사이트 분류의 신뢰도를 높일 필요성이 높아지고 있다. 기존의 유해사이트 분류방식에는 텍스트 기반의 분류방식과 Skin-Color Detection 알고리즘을 이용한 이미지 기반 방식이 있으며, 현재 텍스트 기반의 사이트 분류방식이 보편적으로 사용되고 있다. 본 논문은 기존 유해사이트 분류의 신뢰도를 높이기 위하여 유해사이트에 포함된 링크 정보를 기반으로 유해사이트 분류의 정확성을 검증할 수 있음을 증명하였다.
국내 유해 적조발생에 따른 어패류 양식장에 지속적인 피해가 증가함에 따라서 적조에 대하여 많은 연구가 이루어지고 있다. 그러나 자동으로 적조 이미지를 인식하여서 유해적조생물을 판별하는 적조생물 이미지 검색에 대한 국내의 연구는 미흡한 실정에 있다. 본 논문은 오픈소스 기반의 딥러닝을 이용하여 적조생물 이미지를 분류할 수 있는 방법을 제안한다. 제안방법은 다양하게 표현되는 적조생물 이미지의 인식문제를 해결하기 위하여 텐서프로 프레임워크와 구굴 이미지 분류 모델을 이용하여 구현하였다.
현재 개인용 유해사이트 선별차단 소프트웨어는 기본적으로 등급분류서버의 유해사이트 목록을 이용하는 URL 기반의 필터링 방법을 이용하고 있으며, 일부 제품의 경우에는 이에 추가하여 웹 페이지의 문자와 이미지기반의 내용기반 필터링 방법을 지원하고 있다. 본 논문에서는 유해 사이트 선별차단 소프트웨어를 구성하는 요소기술을 분석함으로써, 현재 운용 중이거나 상용화된 대표적인 유해 사이트 선별차단 시스템 제품 동향을 살펴보고 요소기술별 특징을 비교하기로 한다 이를 통하여, 향후 개인용 유해사이트 선별차단 시스템의 발전방향을 제시하고자 한다.
기존 불법유해정보 분류체계를 비교 분석하여 재정립하고, 국내외 불법유해정보 법 제도 현황을 살펴 보았다. 이와 함께 불법유해정보 접근 차단 방안에 대한 이용자 설문 결과를 기초로 불법유해정보 차단에 대한 정책적 제언을 다음과 같이 제시하고자 한다. 먼저 기존 유해정보차단 프로그램의 문제점인 메모리 사용량 증가에 따른 컴퓨터 성능 저하현상을 개선할 수 있는 기술적인 대책이 마련되어야 하며, 청소년 이용자의 보호자 또는 학부모가 사이트별로 제한할 수 있는 기능을 추가하여 다중 필터링 시스템 환경을 조성해야 한다. 또한 기존의 불법유해정보 신고 프로그램은 신고주소, 신고제목, 증거자료 입력 등 복잡한 구성으로 인해 효율성이 떨어지므로, 신고를 원하는 사이트를 이미지화 하여 바로 저장 및 전송이 가능한 형태로 신고 프로그램을 제작하여 신고완료까지의 시간을 단축해야 할 것이다. 기존의 주민등록번호 입력 방식에서 개인식별번호를 이용한 i-PIN 도입을 의무화하고, 기존 i-PIN 사용자의 전환사용을 통해 불편함을 최소화하여 개인정보유출 방지를 위한 i-PIN 사용을 의무화해야 한다. 마지막으로 '자율 등급 서비스' 이외에도 제3의 기관을 통한 '제3자 등급 서비스'를 동시에 사용하여 정보제공자의 부정확한 등급 표시의 문제점을 보완하도록 해야 한다.
본 연구는 한국의 산업별 독성물질 배출량을 이용하여 산업별 인체유해도를 측정한 것이다. 분석에 이용된 자료는 146종의 인체유해화학물질 배출량과 2000년도 산업연관표이다. 분석결과, 총배출 강도가 높은 산업의 순위는 목재나무제품펄프종이(1.1632) >유기화학기초제품(0.9750) >기타화학제품(0.9620) >플라스틱제품(0.3804) >합성수지 및 합성고무(0.3412) >선박 및 기타 수송장비(0.3275) 등이다. 또한 인체발암지수는 산업 전체가 $11.86198{\times}10^3$(이미지참조)이며, 산업 평균이 $0.26360{\times}10^3$(이미지참조)으로 계산되었다. 인체유해도가 높은 산업의 순위를 보면, 자동차 및 부문품(7.85033) >선철 및 강반성품(4.57409) >철강 1차 제품(4.36668) >선박 및 기타 수송장비(3.43293) >무기화학기초제품(2.64379) 등이다. 총배출강도나 인체유해도 등은 인체유해 화학물질 감축을 위한 수요 및 산업 정책을 전개할 때, 규제산업의 우선순위를 결정하는 근거가 될 수 있다.
적조는 유해 조류의 이상 대량번식으로 바닷물의 색이 적색이나 황색으로 변하며, 어패류를 대량으로 집단 폐사시키는 등 바다환경에 좋지 않은 영향을 미치는 전 세계적인 자연현상이다. 국내에서는 90년대 이후로 어패류 양식장에 지속적인 피해를 입히고 있다. 적조 생물에 대한연구는 수산업 피해가 증가함에 따라서 많은 연구가 이루어지고 있다. 그러나 자동으로 적조 이미지를 인식하여서 유해적조를 판별하는 적조이미지 검색에 대한 국내의 연구는 미흡한 실정에 있다. 특히 전 세계적으로 200여종의 적조 생물은 각기 다른 크기와 모양을 가지고 있기 때문에 이미지 인식을 위한 기준 특징을 추출하기 어렵다. 이 때문에 기존이 연구들은 몇 종류의 적조 생물만을 이미지 인식에 이용하고 있다. 본 논문은 이러한 문제를 해결 할 수 있도록 NMF(non-negative matrix factorization, 비음수 행렬분해)와 이미지의 회전각 보정을 이용한 새로운 적조 이미지 인식 향상방법을 제안한다.
본 논문에서는 최근 스마트폰과 지능형 로봇 분야에서 급속도로 확산되고 있는 유해 멀티미디어의 유해성을 판별하기 위해 유해정보 판별 메커니즘 및 판별 메커니즘 성능 분석에 대해서 설명한다. 이러한 판별 기술들을 기반으로 멀티미디어(이미지, 비디오) 기반의 개별 유해 특징 요소를 정의한다. 또한 시각적 특징을 모델링하여 유해 멀티미디어 콘텐츠의 유해성을 분석한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.