• Title/Summary/Keyword: 유해액체물질

Search Result 36, Processing Time 0.029 seconds

Worker Health Hazard and Risk Assessment of Formamide using in Workplaces in South Korea (작업장에서 사용하는 포름아미드(Formamide)의 근로자 건강 유해성과 위험성 평가)

  • Kim, Hyeon-Yeong
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.2
    • /
    • pp.35-42
    • /
    • 2016
  • Formamide is a colorless fluid with ammonia odor, and irritable when inhaled. It has $LD_{50}$ value of > 5,577 mg/kg in rats for acute oral toxicity and NOAEL of 113 mg/kg/day for target organ (liver) of whole body toxicity. It is also known as reproductive toxicant (1B) and TWA(Time Weighted Average) for it is 10 ppm. Workplace measurements of work places dealing with formamide showed the ppm of all 25 samples was very lower than WEL. However, the exposure concentration can change, depending on workplace condition such as the intensity of work, operating local ventilation system, and wearing protection equipment (Respirators). Therefore, considering it with the risk of whole body toxicity and reproductive toxicity, exposure quantity of each imaginary scenario was calculated at 5.16, 1.72, and $0.43mg/m^3$. The average value was calculated at 0.02-0.58, 0.02-0.66 at 90 percent of cumulative distribution, 0.02-0.69 at 95 percent of cumulative distribution. Therefore, it was generally evaluated to be safe because all values were below 1. However, caution is required to prevent health hazard because it has hepatotoxicity and reproductive toxicity and risk of a high level momentary exposure, depending on the condition of workplace.

A Study on Reported Status and Management Plan of Marine Facilities in Korea 1. On the Basis of Nationwide Status of Marine Facilities (국내 해양시설의 신고 현황과 관리 방안에 관한 연구 1. 전국의 해양시설 현황을 중심으로)

  • Kim, Kwang-Soo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.16 no.3
    • /
    • pp.269-274
    • /
    • 2010
  • Present state of nationwide marine facilities reported to Minister of Land, Transport and Maritime Affairs{MLTM} in Korea for two years 2008 and 2009 was analyzed, and management plan was proposed in this study. As of the end of 2009, total number of nationwide marine facilities was reported to be 672 and to be scattered along the coasts all over the nation. 124 marine facilities reported to Masan regional maritime affairs and port office occupied 18.5% of total nationwide number. 69 marine facilities reported to Mokpo regional office and 69 marine facilities reported to Pohang regional office occupied 10.3%, respectively. 181 marine facilities reported to Busan and Masan regional offices occupied 26.9%, meaning that about a quarter of total nationwide marine facilities concentrated in Southeastern Sea of Korea centering around Busan and Masan. 320 oil and noxious liquid substances storage facilities occupied 47.6% of total nationwide number. 11 pollutant storage facilities occupied 1.6%. 178 ship construction, repair and scrap facilities occupied 26.5%. 7 cargo handling facilities occupied 1.0%. 12 waste storage facilities occupied 1.8%. none of marine facilities for tourism, housing and restaurant were reported. 88 water intake and outlet facilities occupied 13.1%. 37 fishing spots at play occupied 5.5%. 13 other marine facilities occupied 1.9%. 6 integrated marine science base facilities occupied 0.9% of total nationwide number. The guidance and the public relation for national report system of marine facilities, the improvement of national report system and management plan, the advancement and complement of national report affairs-handling guides, and the voluntary participation in national report system and the performance of duties by the owners of marine facilities were proposed for better management plan of marine facilities.

Formation and elimination of pores in $YBa_2Cu_3O_{7-x}$ Oxides ($YBa_2Cu_3O_{7-x}$ 산화물에서 기공의 생성과 소멸)

  • 김찬중;홍계원
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2001.04a
    • /
    • pp.9-10
    • /
    • 2001
  • 용융공정 $YBa_2Cu_3O_{7-x}$(123) 초전도체는 고자장 하에서도 통전특성이 우수하다 그러나 123 초전도체에는 미세균열이나 기공과 같이 초전도체의 통전특성에 유해 한 요인들도 다수 포함된다. 미세균열은 고온 정방정 상이 저온 사방정상으로 상변 태 시 발생하는 웅력에 의해 생성된다. 반면, 기공은 123 성형체를 녹이는 과정에서 123 상에 포함된 산소원자들이 격자로부터 이탈되고, 이 산소원자들이 모여 액상에서 기공을 형성한다. 제조공정에 따라 기공의 크기와 밀도가 다르지만 대략 수십 이크론 정도로 대단히 크다 생성된 기공 중 일부는 열처리 중에 소멸되나, 어떤 것들은 그대로 남아 초전도체의 치밀화를 방해한다. 본 연구에서는 123의 용융 및 $YBa_2Cu_3O_{7-x}$(211)과 액상으로의 분해 과정 및 포정반응과 관련된 미세조직을 조사하여 기공생성과 소멸과정을 조사하였고, 123의 최종 미세조직에 대한 기공의 영향에 대 하여 연구하였다. 열처리 스케쥴은 123-211-액상의 그림 l의 2원 상태도를 기초로 하여 결정하였다. 먼저 부분 용융상태에서의 기공의 분포를 알고자 시편을 105$0^{\circ}C$에서 0.5-1 시 간 유지한 후, 액체 질소통에 넣어 냉각하였다 (그림 2의 열처리 경로 CD)$\circled1$부분 용 융상태에서 급랭할 경우 211과 액상 상태가 그대로 유지되므로 액상에서의 기공분 포를 관찰할 수 있다. 또 다른 시편들은 그림 2의 @$\circled2$경로로 열처리하였다. 이 시편에서는 고온에서 생성된 211과 액상이 반웅하여 123 결정이 생성, 성장하므로 123 결정립 내의 기공분포를 알 수 있다. 그림 3은 시편에서의 기공과 액상포켓의 분포를 모식도와 각 부위의 미세조직 사진이다. 시편에는 산소가스 발생으로 인해 생성된 수형의 기공이 관찰된다. 기공은 시편의 중앙에 집중되며, 시편 바깥부분은 기공에 액상이 채워진 액상포켓이 관찰된다. 기공의 생성과 소멸과정은 다음과 같다. 출발물질인 123 분말이 211과 액상으로 분해될 때 산소가스가 배출되며, 이로 인해 액상에서 구형의 기공이 생성된다. 이들 중 일부는 액상으로 채워져 소멸되나, 나머지는 그대로 남는다. 특히, 시편 중앙에 서는 수십-수백 마이크론 크기의 커다란 기공이 다수 관찰된는데, 이는 기공의 합체로 만들어진 것이다. 포정반응 열처리 시 기공 소멸로 만들어진 액상포켓들은 주변 211 입자와 반응하여 123 영역으로 변한다. 이곳은 다른 지역과 비교하여 211 밀도 가 낮기 때문에, 미반응 액상이 남거나 211 밀도가 낮은 123 영역이 된다. 액상으로 채워지지 못한 구형의 기공들 중 다수가 123 결정 내로 포획되며, 그 형상은 액상/ 기공/고상 계면에너지에 의해 결정된다.

  • PDF

Improving the Ship Marine Pollution Prevention Manager Education and Training Curriculum - Based on a Comparative Analysis between Korean and Foreign Legal Education - (선박 해양오염방지관리인 교육·훈련 교육과정 개선방안에 관한 연구 - 국내·외 법정교육 비교·분석을 기반으로 -)

  • Choi, Jung-Sik;Ha, Min-Jae
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.4
    • /
    • pp.353-365
    • /
    • 2020
  • The quantitative increase in maritime transport for domestic and foreign trade is one of the main reasons for the increase in marine pollution accidents. Despite the implementation of relevant laws in each country to prevent and mitigate marine pollution accidents caused by ships, human negligence (carelessness, intention, etc.) by ship workers has been reported as the biggest cause of marine pollution accidents. One of the most effective ways to reduce marine pollution accidents caused by ships is to reduce human negligence through systematic education and training of ship workers. Therefore, this study aimed to review the appropriateness of the statutory education and training curriculum for ship marine pollution prevention managers in accordance with domestic laws and regulations such as the 「Marine Environment Management Act」 and suggest improvement measures. To this end, we compared and analyzed the legal training·general education courses related to the prevention of marine pollution and marine disasters in Japan, where the laws and systems are similar to Korea, and investigated the cases of legal training for experts in land pollution prevention in Korea.

Recent Understanding in Particular Matter-Mediated Aging and Age-Related Diseases (미세먼지에 의한 노화 및 노화 관련 질병에 대한 최근 연구 동향)

  • EunJin Bang;Yung Hyun Choi
    • Journal of Life Science
    • /
    • v.34 no.1
    • /
    • pp.68-77
    • /
    • 2024
  • Airborne particulate matter (PM) is an environmentally hazardous pollutant that originates from various sources. PM is comprised of solid particles and liquid droplets of diverse composition and size. Hazardous chemical compositions of PM include elemental and organic carbon, organic compounds, biological compounds and metals. Upon acute and chronic PM exposure, toxic contaminants enter and accumulate within physiological systems and prompt cell structure changes accompanied with intracellular endoplasmic reticulum stress, mitochondrial dysfunction, oxidative stress, inflammation, lipid accumulation, and cell cycle arrest. Ultimately, these cellular response leads to the development of key characteristics of aging. In addition, PM internalization enhances autophagy reflux and lysosomal dysfunction, which is involved in cell aging. Previous studies have emphasized a positive association between PM and increased mortality or decreased lifespan, although these are evidenced mostly by observational studies. Direct evidence of the link between PM and aging is still limited. This review evaluates the evidence from not only observational studies but also in vitro and in vivo evidence of PM on aging progression and age-related diseases development. This evidence is based on age-associated cellular changes including endoplasmic reticulum stress, mitochondrial dysfunction, oxidative stress, inflammation, adipose accumulation, autophagy, which strengthen the association between PM exposure and aging. Understanding the underlying cellular responses under PM may allow for the development of new therapeutic targets for PM-induced aging.

Study on High Sensitivity Metal Oxide Nanoparticle Sensors for HNS Monitoring of Emissions from Marine Industrial Facilities (해양산업시설 배출 HNS 모니터링을 위한 고감도 금속산화물 나노입자 센서에 대한 연구)

  • Changhan Lee;Sangsu An;Yuna Heo;Youngji Cho;Jiho Chang;Sangtae Lee;Sangwoo Oh;Moonjin Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.spc
    • /
    • pp.30-36
    • /
    • 2022
  • A sensor is needed to continuously and automatically measure the change in HNS concentration in industrial facilities that directly discharge to the sea after water treatment. The basic function of the sensor is to be able to detect ppb levels even at room temperature. Therefore, a method for increasing the sensitivity of the existing sensor is proposed. First, a method for increasing the conductivity of a film using a conductive carbon-based additive in a nanoparticle thin film and a method for increasing ion adsorption on the surface using a catalyst metal were studied.. To improve conductivity, carbon black was selected as an additive in the film using ITO nanoparticles, and the performance change of the sensor according to the content of the additive was observed. As a result, the change in resistance and response time due to the increase in conductivity at a CB content of 5 wt% could be observed, and notably, the lower limit of detection was lowered to about 250 ppb in an experiment with organic solvents. In addition, to increase the degree of ion adsorption in the liquid, an experiment was conducted using a sample in which a surface catalyst layer was formed by sputtering Au. Notably, the response of the sensor increased by more than 20% and the average lower limit of detection was lowered to 61 ppm. This result confirmed that the chemical resistance sensor using metal oxide nanoparticles could detect HNS of several tens of ppb even at room temperature.