• Title/Summary/Keyword: 유한요소 해석

Search Result 9,816, Processing Time 0.042 seconds

Determination of Bond Strength and Fracture Energy of a Bi-material Cylinder with Peny-shaped Interface Crack by Pull-off Test (직접인장시험에 의한 원형 비부착면이 삽입된 신.구 콘크리트의 부착강도 및 파괴에너지 산정)

  • Yang, Sung-Chul;Kim, Jin-Chul;Park, Jong-Won
    • International Journal of Highway Engineering
    • /
    • v.6 no.1 s.19
    • /
    • pp.47-56
    • /
    • 2004
  • To determine the pure bond strength between substrate and its overlayed concrete material, a direct pull-off test method was introduced by using a bi-material cylinder with which a penny-shaped crack was mountained at its interface. First, to evaluate the stress magnification or concentration at the interface, the energy release rates of a penny-shaped interface crack in remote tension loading on a bi-material cylinder were determined in terms of different modulus ratios and undonded area ratios(crack ratios) using a commercial finite element program. Then the energy release rates were calibrated as non-dimensional values in consideration of structural dimensions and applied forces. And to evaluate whether this new pull-off test method gives sound test results, three different sizes of unbended area ratios were incorporated along their interface in bi-material cylinders(sulphur polymer concrete + old concrete). Test results showed that all specimens were broken off at their interfaces as intended. Also the FEM analyses and test results indicated that a bi-material specimen with unbended area ratio of 0.4$\sim$0.6 is suitable for best accurate testing.

  • PDF

Evaluation of Fire Resistance of Unprotected Concrete-filled Rectangular Steel Tubular Columns under Axial Loading (재하가열시험에 의한 무내화피복 콘크리트충전 각형강관기둥의 내화성능평가)

  • Ahn, Jae Kwon;Lee, Cheol Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.4
    • /
    • pp.323-334
    • /
    • 2014
  • In this paper, experimental program and associated numerical study were carried out to evaluate the fire resistance of unprotected concrete-filled rectangular steel tubular (CFT) columns subjected to the standard fire. The key testing parameters included the length effect, the load ratio, and the sectional dimensions of the CFT columns. Temperature distribution and axial deformation of the CFT column specimens were measured and analyzed. Rather early local buckling of steel tubes was observed in all the specimens. This caused subsequent load transfer from steel tube to concrete, and eventually triggered concrete crushing, or complete loss of the load bearing capacity of the column. This implies that the limit state of local buckling as well as overall flexural buckling should be incorporated in fire design procedure. As expected, the fire resistance time of specimen with higher load ratio consistently lessened. The prediction of fire resistance time of unprotected CFT columns based on the limiting steel temperature in current design codes or the formula proposed by previous studies is slightly conservative compared to the fire test results available. To establish the finite element analysis model that can be used to predict the thermal and structural behaviour of unprotected CFT columns in fire, the fully coupled thermal-stress analysis was also tried by using the commercial code ABAQUS. The numerical results showed a reasonable global correlation with the experimental results.

Analysis of Temperature Characteristics on Accelerometer using SOI Structure (SOI 구조 가속도센서의 온도 특성 해석)

  • Son, Mi-Jung;Seo, Hee-Don
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.1-8
    • /
    • 2000
  • One of today's very critical and sensitive accurate accelerometer which can be used higher temperature than $200^{\circ}C$ and corrosive environment, is particularly demanded for automotive engine. Because silicon is a material of large temperature dependent coefficient, and the piezoresistors are isolated with p-n junctions, and its leakage current increase with temperature, the performance of the silicon accelerometer degrades especially after $150^{\circ}C$. In this paper, The temperature characteristic of a accelerometer using silicon on insulator (SOI) structure is studied theoretically, and compared with experimental results. The temperature coefficients of sensitivity and offset voltage (TCS and TCO) are related to some factors such as thermal residual stress, and are expressed numerically. Thermal stress analysis of the accelerometer has also been carried out with the finite-element method(FEM) simulation program ANSYS. TCS of this accelerometer can be reduced to control the impurity concentration of piezoresistors, and TCO is related to factors such as process variation and thermal residual stress on the piezoresistors. In real packaging, The avarage thermal residual stress in the center support structure was estimated at around $3.7{\times}10^4Nm^{-2}^{\circ}C^{-1}$ at sensing resistor. The simulated ${\gamma}_{pT}$ of the center support structure was smaller than one-tenth as compared with that of the surrounding support structure.

  • PDF

Effect on Matric Suction in Soils due to Hysteretic Soil Water Characteristic Curves (함수특성곡선 이력현상이 지반 내 모관흡수력에 미치는 영향)

  • Kim, Jae-Hong;Hwang, Woong-Ki;Song, Young-Suk;Kim, Tae-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.4
    • /
    • pp.91-100
    • /
    • 2012
  • Soil-water characteristic curves (SWCCs), which represent a physical property in partially saturated soils, show the relation between volumetric water content and matric suction. The SWCCs exhibit hysteresis during wetting and drying, however experimental expressions used to describe SWCCs have generally ignored the hysteresis. In addition, the shape of SWCC may depend on the void ratio which is changed by soil skeleton deformations or hysteretic behavior under various loading conditions. Hence, it is necessary to understand, both empirically and analytically, the relationship between soil skeleton deformations and the SWCCs of various soils. The typical SWCCs experimentally have drying, wetting, and the second drying curve. The measurement of a complete set of hysteretic curves is severely time-consuming and difficult works, then the first drying curve of SWCC is generally determined to estimate the hydraulic conductivity and shear strength function of partially saturated soils. This paper presents the hydraulic-mechanical behavior of partially saturated soils (weathered soil and silty soil) for volume changes and hysteresis in SWCCs regarding the difference between the first drying and wetting curve.

An Investigation of the Shear Buckling Characteristics of Sinusoidal Corrugated Steel Plates (정현파형 주름강판의 전단좌굴특성 분석)

  • Shon, Su-Deok;Yoo, Mi-Na;Lee, Seung-Jae;Kang, Joo-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.10-19
    • /
    • 2014
  • Corrugated steel plates are made by fabricating thin steel plates to have trapezoidal or sinusoidal corrugation, and the corrugated plates are able to maintain high out-of-plane rigidity even when they are used instead of thick flat plates. Also, corrugated steel plates have almost no axial rigidity due to the accordion effect. Thus, if they are applied to the webs of plate girders, designing can be easily conducted so that the webs bear only shear stresses. However, unlike flat plates, the shear buckling of corrugated steel plates has very complex characteristics where buckling occurs due to the interaction of local and global buckling, besides local buckling and global buckling. For the investigation of the cause and characteristics of this interactive buckling, studies on sinusoidal corrugated steel plates are fewer than studies on trapezoidal corrugated steel plates. Therefore, in this study, the shear buckling characteristics of sinusoidal corrugated steel plates and the occurrence pattern of interactive buckling were investigated. For the calculation of shear buckling strength, a finite element program was used, and the analysis results were compared with the exact solution. In addition, the characteristics of buckling stress change and the change of buckling mode shape depending on corrugation thickness and shape parameter were analyzed, and by comparing these results with the results of a theoretical equation, the timing of buckling mode change was analyzed.

Effect of Implant Preload on the Marginal Bone Stresses Studied by Three Dimensional Finite Element Aanalysis (임플란트 고정체와 지대주 간의 전하중 크기가 골응력에 미치는 영향에 대한 유한요소해석)

  • Nam, Hyo-Jun;Jo, Kwang-Hun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.28 no.2
    • /
    • pp.127-138
    • /
    • 2012
  • This study is to assess the effect of preload level on the stress development at the marginal cortical bone surrounding implant neck. A finite element model was created for a single implant placed in the lower jaw bone. An external load of 100N was applied on the top of abutment at 30 degree with the implant axis in lingo-buccal direction. Five different preloads, i.e. 0, 200, 400, 600, 800N were applied to the abutment stem to investigate if and/or how the preload affects on the marginal bone stress. Differences in the marginal bone stress were recorded depending on the level of preload. On the other hand, the tensile stress on the marginal cortical bone decreased in models of higher preload. Preloads between abutment/fixture can increase compressive stresses in the marginal cortical bone although the amount may be insignificant as compared to those generated by functional forces.

A Study on the Verification of Design Compatibility for a Europe Type Automatic Coupler Head according to TSI Certification Standards (TSI 인증기준에 따른 유럽 표준형 자동복합연결기 헤드의 설계적합성 검증 연구)

  • Min, Kyeong Bin;Park, Jin Kyu;Kang, Ji Sung;Kim, Ki Nam
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.1
    • /
    • pp.29-37
    • /
    • 2016
  • The type approval system of the railway safety law, which was enforced in 2014, has been preferentially applied to the field of railway vehicles. The type approval system addresses railway vehicles and railway constituents. Unlike the previous system, it requires serial verification stages divided, in consecutive order, into verification of design compatibility and conformity and type test. These stages are in accord with international certification systems including TSI certification of the European commission. This study has been carried out to find and meet the design requirements for a coupler head, which is a part of the automatic coupler system; requirements were drawn from TSI and technical specifications that are subordinate to the domestic railway approval system. Through this study, it has been found that there exist 34 design requirements to acquire a complete coupler head. Among those requirements, 32 were verified by document inspection and two were able to be verified by performing FEA and gathering range analysis data.

GEOMETRIC NINLINEAR ANALYSIS OF UNERGROUND LAMINATED COMPISITE PIPES (기하학적 비선형을 고려한 지하매설 복합재료 파이프의 해석)

  • 김덕현;이인원;변문주
    • Computational Structural Engineering
    • /
    • v.2 no.1
    • /
    • pp.65-70
    • /
    • 1989
  • An analytical study was conducted using the Galerkin technique to determine behaviour of thin fibrereinforced and laminated composite pipes under soil pressure. Geometric nonlinearity and material linearity have been assumed. It is assumed that vertical and lateral soil pressure are proportional to the depth and lateral displacement of the pipe respectively. It is also assumed that radial shear stress is negligible because the ratio of thickness to the radius of pipe is very small. The above results are verified by the finite element analysis.

  • PDF

A Study on the Interfacial Bonding in AlN Ceramics/Metals Joints: I. Residual Stress Analysis of AlN/Cu and AlN/W Joints Produced by Active-Metal Brazing (AlN 세라믹스와 금속간 계면접합에 관한 연구 : I. AlN/Cu 및 AlN/W 활성금속브레이징 접합체의 잔류응력 해석)

  • Park, Sung-Gye;Lee, Seung-Hae;Kim, Ji-Soon;You, Hee;Yum, Young-Jin
    • Korean Journal of Materials Research
    • /
    • v.9 no.10
    • /
    • pp.962-969
    • /
    • 1999
  • Elastic and elasto-plastic stress analyses of AlN/Cu and AlN/W pints produced by active-metal brazing method using Ag-Cu-Ti insert-metal were performed with use of Finite-Element-Method(FEM). The results of stress analyses were compared with those from the pint strength tests and the observations of fracture behaviors. It was shown that a remarkably larger maximum principal stress is built in the AlN/Cu pint compared to the A1N/ W joint. Especially, the stress concentration with tensile component was confirmed at the free surface close to the bonded interface of AlN/Cu. The elasto-plastic analysis under consideration of stress relaxation effect of Ag-Cu-Ti insert possessing a so-called 'soft-metal effect' showed that the insert leads to a lowering of maximum principal stress in AlNiCu pint, even though an increase of the insert thickness above 100$\mu\textrm{m}$ could not bring its further decrease. The maximum pint strengths measured by shear test were 52 and 108 MPa for AlNiCu and AlN/W pints. respectively. Typical fractures of AlN/Cu pints occurred in a form of 'dome' which initiated from the free surface of AlN close to the bonded interface and proceeded towards the AlN inside forming a large angle. AlN/W pints were usually fractured at AlN side along the interface of AlN/insert-metal.

  • PDF

A Study on the Interfacial Bonding between AlN Ceramics and Metals: II. Effect of Mo Interlayer on the Residual Stress of AlN/Cu Joint (AlN 세라믹스와 금속간 계면접합에 관한 연구: II. AlN/Cu 접합체의 잔류응력에 미치는 Mo 중간재의 영향)

  • Park, Sung-Gye;Kim, Ji-Soon;You, Hee;Yum, Young-Jin;Kwon, Young-Soon
    • Korean Journal of Materials Research
    • /
    • v.9 no.10
    • /
    • pp.970-977
    • /
    • 1999
  • Effect of Mo interlayer on the relaxation of residual stress in AlN/Cu pint bonded by active-metal brazing method was investigated. The stress analyses by finite-element-method, the measurement of pint strength and the observation of fracture surface were carried out and their results were compared with each other. From the results of stress analysis it is confirmed that a Mo interlayer led to a shift of maximum stress concentration site from AlN/insert-metal interface$\rightarro$ insert-metal/Mo$\rightarro$Mo interlayer. Additionally, with increase of the Mo interlayer thickness the stress concentration with tensile component was separately built both at the interface of Cu/Mo and AlN/Mo. whereby the residual stress in the free surface of AlN close to the bonded interface was drastically reduced. The AlN/Mo/Cu pints with Mo interlayer thickness of above 400$\mu\textrm{m}$ showed the strengths higher than 200 MPa. upto max. 275 MPa, while the AlN/Cu pint only max. 52 MPa.

  • PDF