• Title/Summary/Keyword: 유한요소 충격해석

Search Result 368, Processing Time 0.023 seconds

On the Explosive Welding Characteristics of Steel-Titanium Dissimilar Materials Using finite Element Method (유한요소법을 이용한 강-티타늄 이종소재의 폭발 용접조건 해석)

  • Kim, Chung-Kyun;Kim, Myung-Koo;Sim, Sang-Han;Moon, Jeong-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.3
    • /
    • pp.825-831
    • /
    • 1996
  • Using the two-dimensional hydrocode HI-DYNA2D, a calculation on the explosive selding of dissimilar plates(Steel Titanium) was made for the pressure, temperature, velocity and impact ingles adjacent to the collision point during the welding process. The FEM result indicates that optimal stand-off distance of initially parallel set-up is 3-5mm for various values of the explosive thickness. The calculation shows that when the explosive thickness is around 30mm, the temperature of welding point which is strongly related to the metallic jet formation is 2, 000-3, 500K for the given stand-off distance.

A Study on the Collapse Strength Characteristics of Ship Bottom Plating Subject to Slamming Induced Impact Lateral Pressure Loads (선저슬래밍 충격횡압력을 받는 선체 판부재의 붕괴강도 특성에 관한 연구)

  • Jeom-Kee Park;Jang-Yang Chung;Young-Min Paik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.2
    • /
    • pp.77-93
    • /
    • 1999
  • The twin aims of the paper are to investigate the collapse strength characteristics of ship plating subject to impact pressure loads and to develop a simple structural design formula considering impact load effects. The general purpose nonlinear finite element program STARDYNE together with existing experimental results is used to investigate the collapse behavior of plating under impact pressure loads. The rigid plastic theory taking into account large deflection effects is applied to the development of the design formulation. In the theoretical method, the collapse strength formulation for plating subject to hydrostatic pressure is first derived using the rigid plastic theory. By including the strain rate erects in the formulation it can be applied to impact pressure problems. As illustrative examples, the collapse behavior of steel unstiffened plates and aluminum alloy stiffened panels subject to impact pressure loads is analyzed.

  • PDF

Vibration Analysis of Three Layer Sandwich Beam (3층 샌드위치보의 진동해석)

  • 박철휴;김원철;양보석
    • Journal of KSNVE
    • /
    • v.8 no.1
    • /
    • pp.157-170
    • /
    • 1998
  • This paper proposes a new technique to formulate the finite element model of a sandwich beam by using GHM (Golla-Hughes-McTavish) internal auxiliary coordinates to account for frequency dependence. Through the use of auxiliary coordinates, the equation of motion of undamped mass and stiffness matrix form is extended to encompass viscoelastic damping matrix. However, this methods all suffer from an increase in order of the final finite element model which is undesirable in many applications. Here we propose to combine the GHM method with model reduction techniques to remove the objection of increased model order.

  • PDF

A Numerical Analysis on Application of Laser Peening to Dissimilar Metal Welds in a Safety Injection Nozzle of Integral Reactor (일체형 원자로 안전주입 노즐 이종금속 용접부에 대한 레이저 피닝 적용의 수치 해석적 연구)

  • Seo, Joong-Hyun;Kim, Jong-Sung;Jhung, Myung-Jo;Ryu, Yong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.6
    • /
    • pp.599-608
    • /
    • 2012
  • A numerical analysis has been performed through implicit dynamic finite element analysis using the commercial package, ABAQUS in order to investigate effect of laser peening on welding residual stress mitigation of dissimilar metal welds in a safety injection nozzle of integral reactor. The implicit dynamic finite element analysis are compared with the previous experimental results. By comparison, it is identified that the implicit dynamic finite element analysis is valid for residual stress mitigation via laser peening. Implicit static finite element residual stress analysis has been performed for the dissimilar metal welds subject to inner repair welding. The analysis results represent that both axial and hoop residual stresses are tensile on inner surface of safety injection nozzle due to inner repair welding. Also Parametric study has performed to investigate effect of laser peening variables such as maximum impact pressure, duration time of pressure, spot diameter and peening direction on the welding residual stress mitigation. As a result, it is found that laser peening has the preventive maintenance effect to mitigate mainly residual stresses of region near inner surface.

Aircraft Impact Analysis of Steel Fiber Reinforced Containment Building (강섬유를 적용한 원전 격납건물의 항공기 충돌해석)

  • Seo, Dong Won;Noh, Hyuk Chun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.2
    • /
    • pp.157-164
    • /
    • 2013
  • In this study, the structural performance of nuclear power plant containment buildings, which are made of steel fiber reinforced concrete(SFRC) and subject to aircraft crash, is examined by finite element analyses. The applied loads by aircraft crash against the buildings are modeled using Riera impact load function and by the varying aircraft contact area with respect to time. CSCM concrete model in LS-DYNA is employed to model SFRC. The parameters for the material model are determined from SFRC strength prediction models. Based on the volume ratio of steel fiber in SFRC, the structural performance of nuclear containment buildings subject to aircraft crash are analysed using a commercial finite element analysis program LS-DYNA. The safety assessments of the buildings subject to the crash are discussed and the effectiveness of SFRC for nuclear power plant containment building on the increase of aircraft crash resistance is also evaluated.

Analysis of High Velocity Impact on SFRC Panels Using ABAQUS (ABAQUS를 이용한 강섬유보강 콘크리트 패널의 고속 충돌 거동 해석)

  • Son, Seok-Kwon;Jang, Seok-Joon;Yun, Hyun-Do;Kim, Yong-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.2
    • /
    • pp.141-148
    • /
    • 2016
  • This paper employed finite element method (FEM) to study the dynamic response of Steel Fiber-Reinforced Concrete(SFRC) panels subjected to impact loading by spherical projectiles. The material properties and non-linear stress-strain curves of SFRC were obtained by compression test and flexural test. Various parametric studies, such as the effect of fiber volume fraction and thickness of panels, are made and numerical analyses are compared with experiments conducted. It is shown that protective performance of concrete panels will be improved by adding steel fiber. Area loss rates and weight loss rates are decreased with increasing fiber volume fraction. Also, penetration modes can be expected by FEM, showing well agreement with experiment. Results can be applied for designing the protection of military structures and other facilities against high-velocity projectiles.

Inverse Estimation and Verification of Parameters for Improving Reliability of Impact Analysis of CFRP Composite Based on Artificial Neural Networks (인공신경망 기반 CFRP 복합재료 충돌 해석의 신뢰성 향상을 위한 파라미터 역추정 및 검증)

  • Ji-Ye Bak;Jeong Kim
    • Composites Research
    • /
    • v.36 no.1
    • /
    • pp.59-67
    • /
    • 2023
  • Damage caused by impact on a vehicle composed of CFRP(carbon fiber reinforced plastic) composite to reduce weight in the aerospace industries is related to the safety of passengers. Therefore, it is important to understand the damage behavior of materials that is invisible in impact situations, and research through the FEM(finite element model) is needed to simulate this. In this study, FEM suitable for predicting damage behavior was constructed for impact analysis of unidirectional laminated composite. The calibration parameters of the MAT_54 Enhanced Composite Damage material model in LS-DYNA were acquired by inverse estimation through ANN(artificial neural network) model. The reliability was verified by comparing the result of experiment with the results of the ANN model for the obtained parameter. It was confirmed that accuracy of FEM can be improved through optimization of calibration parameters.

Whipping analysis of hull girders considering slamming impact loads (슬래밍 충격하중을 고려한 선체 휘핑 해석)

  • Seong-Whan Park;Keun-Bae Lee;Chae-Whan Rim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.3
    • /
    • pp.99-109
    • /
    • 2000
  • Elastic dynamic responses analysis program for ship hulls considering slamming impact loads due to the voyage in large amplitude waves is developed. Ship hull structures are modeled by a thin-walled beam model in order to consider effects of shear deformation. The momentum slamming theory is used to derive nonlinear hydrodynamic forces considering intersection between wave particles and ship section. For the validation of the developed computer program, motions of a V-shaped simple section model and S-175 standard container model are calculated and analyzed. In each numerical example, time histories of relative displacement, velocity and vertical bending moment of a ship section are derived, considering the effect of slamming impacts in various wave conditions.ures near the free surface as well as the wake of the hydrofoil.

  • PDF

Numerical Simulation of Ground Expansion Induced by Pulse Discharge Technology (펄스 방전 기술에 의한 지반 확공 현상 수치해석 모사)

  • Park, Hyun-Ku;Lee, Seung-Rae;Kim, Seon-Ju;Cho, Gyu-Yeon
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.3
    • /
    • pp.25-34
    • /
    • 2010
  • In the present paper, a numerical study was carried out to simulate ground expansion induced by an application of pulse discharge technology. Based on laboratory pulse discharge tests, the characteristics of shockwave were investigated, and then the laboratory tests were numerical1y simulated using underwater explosion model implemented in a coupled acoustic-structural finite element analysis. In addition, for clayey soils, the expansion of ground was also studied using soil properties obtained from empirical correlations with SPT N values. It was found that the calculation results well agreed with the field test results.