• Title/Summary/Keyword: 유한요소 재생성

Search Result 36, Processing Time 0.028 seconds

Structural Analysis of Liquid Rocket Thrust Chamber Regenerative Cooling Channel using Bodner-Partom Viscoplastic Model (Bodner-Partom 점소성 모델을 이용한 액체로켓 연소기 재생냉각 채널 구조해석)

  • Ryu, Chul-Sung;Baek, Un-Bong;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.4
    • /
    • pp.69-76
    • /
    • 2006
  • Elastic-viscoplastic structural analysis has been performed for regenerative cooling chamber of liquid rocket thrust chamber using Bodner-Partom visco-plastic model. Strain rate test was conducted for a copper alloy at various temperatures in order to get material constants of visco-plastic model used in the structural analysis. Material constants of visco-plastic model were obtained from strain rate test results and visco-plastic model was incorporated into finite element program, Marc, by means of a user subroutine. The structural analysis results indicated that the deformation of cooling channel is mostly caused by thermal loading rather than pressure loading and confirmed structural stability of the cooling channel under the operating condition.

Structural Design and Installation of Tracking-type Floating PV Generation System (추적식 수상 태양광발전 시스템의 설계 및 시공)

  • Kim, Sun-Hee;Lee, Young-Guen;Seo, Su-Hong;Joo, Hyung-Joong;Yoon, Soon-Jong
    • Composites Research
    • /
    • v.27 no.2
    • /
    • pp.59-65
    • /
    • 2014
  • Most of energy are obtained from oil, coal, and natural gas, most likely, fossil fuel which is limited throughout the world. Recently, high crude oil price, climate change, oil depletion, etc. are main reason to get attention to non-fossil energy including renewable energy in the world. In this study, we studied analysis and design of structure system composed of pultruded fiber reinforced polymer composite (PFRP) which has many advantages such as high specific strength and stiffness, high corrosion resistance and chemical resistance. For the design and construction of floating-type structure, PFRP structural members may be the first choice. Design of tracking-type floating PV generation structure was performed by using the results of the finite element analysis. The structure is fabricated and installed on the water surface. Before the installation of the structure, safety related problems associated with installation and operation are investigated using the finite element simulation and it was found that the structure is safe enough to resist externally applied loads.

Thermo-structural Effects of Thermal Barrier Coating on Regenerative Cooling Chamber (열차폐 코팅이 재생냉각 챔버에 미치는 열/구조적인 영향)

  • Ryu, Chul-Sung;Lee, Keum-Oh;Kim, Hong-Jip;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.421-425
    • /
    • 2009
  • A study has been performed to investigate the thermo-mechanical effects of thermal barrier coating on liquid rocket regenerative cooling chamber using finite element analysis. Two kinds of thermal barrier coatings were studied on the same loading condition: first, NiCrAlY-$ZrO_2$, coating which is currently applied to the developing combustion chamber and second, Ni-Cr coating which might be applied in the future. Analysis results showed that NiCrAlY-$ZrO_2$ coating has better decreasing effect of temperature than the Ni-Cr coating. As a results, temperature and deformation of the cooling channel in the NiCrAlY-$ZrO_2$ coating were also less than those of the Ni-Cr coating. The Ni-Cr coating has no effect on a structural stability of the outer jacket but the NiCrAlY-$ZrO_2$ coating reduced the effective stress of the outer jacket and enhanced the structural stability of the chamber.

  • PDF

Study on the Environmental Flow for Ecosystems at Hwangryong River (황룡강의 생태계를 고려한 환경유량 연구)

  • Kang, Myung-Sung;Park, Nam-Hee;Lee, Jeong-U;Kim, Chul
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.860-864
    • /
    • 2010
  • 하천은 유속과 수심을 변화시키는 환경과 수역에서 고수부지까지의 다양한 지형변화, 홍수에 의한 파괴와 재생 등 하천 특유의 조건을 가지고 있어 여러 생물이 공존하여 살 수 있는 환경을 가지고 있다. 근래 하천은 친수성을 높이고 하천오염문제를 해결하기 위해 자연친화적인 하천으로 개발 방향이 바뀌고 있지만, 생물 서식처 기능 보다는 친수성이 강조되는 경우가 많다. 본 연구에서는 하천에 도입을 원하는 식생에 대한 환경유량을 분석하여 도입 가능한 하천 영역을 찾는 것이 목적이다. 연구대상지역은 황룡강이며 지형자료는 HEC-RAS의 횡단자료를 이용하여 유한요소망으로 만들어 사용하였다. 하천 식생을 고려한 환경유량을 계산하기 위하여 HEC-EFM을 이용하였다. 연구지역의 수위-유량자료, 도입 가능한 식생의 Life Cycle을 분석하여 HEC-EFM에 입력하여 환경유량을 계산하였다. 산정한 환경유량을 HEC-RAS모형으로 모의하여 환경유량에 맞는 수위 유량을 계산하고 이 결과를 HEC-GeoRAS모형을 이용하여 도입 가능한 영역을 시각화 하였다.

  • PDF

The prediction of thermal deformation of Ni alloy substrate for application of flexible solar cell (플렉서블 태양전지 기판재용 Ni 계 합금의 열변형 예측)

  • Koo, Seung-Hyun;Lee, Heung-Yeol;Yim, Tai-Hong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.382-385
    • /
    • 2008
  • 박막형 태양전지 분야는 저가이고 가볍다는 특징을 가지고 있으며, 휘어지는 기판재를 적용하여 플렉서블 태양전지를 제조할 수도 있다는 장점을 가지고 있다. 본 연구에서 플렉서블 태양전지에 적합한 금속기판재를 제조하는 연구를 수행하였다. 일반적으로 기판재와 cell을 구성하는 반도체 층의 열팽창 거동 차이에 의한 열변형이 태양전지의 공정안정성에 영향을 주는 것으로 알려져 있었으며, cell을 구성하는 반도체 층과 열팽창 거동이 유사한 금속기판재의 적용이 필요하다. 이러한 특성을 쉽게 제어할 수 있는 금속기판재를 얇게 제조하기에 적절한 방법은 전주법이다. 전주법을 적용하여 조성 및 두께가 다른Ni 계 합금의 열팽창 거동을 TMA 장비를 사용하여 측정하였으며, 태양전지 제조에 사용되는 고온공정시 안정성 확보를 위하여 열처리후에 금속기판재의 열팽창 거동을 측정하였다. 그리고 전산해석tool 을 활용하여 가상의 CIS 플렉서블 태양전지 제조공정을 설정하고 고온공정온도에서 상온으로 냉각시 발생되는 층간 열변형 연구를 수행하였다. 그리고 플렉서블 태양전지용 기판재로 Ni 계 합금표면에 절연체인 $SiO_2$ 증착 연구를 수행하여 Fe-52Ni 합금에서 안정적인 절연층을 얻을 수 있었다.

  • PDF

Development of PEMFC Metallic Bipolar Plate for Automotive Driving (자동차 구동용 PEMFC 금속계 분리판 개발)

  • Lee, Jong-Chan;Kim, Ki-Jung;Yang, Yoo-Chang;Jeon, Yoo-Taek
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.89-92
    • /
    • 2007
  • The metallic bipolar plate in PEMFC is widely used for automotive driving because of its advantages, i) high strength, ii) high chemical stability, iii) low gas permeability and iv) applicability to mass production. Especially, the metallic bipolar plate which is manufactured with the sheet metal stamping process can be applied in automotive PEMFC with less volume and weight because of its thin thickness but the formability and springback problems arise in real manufacturing process. The assessment for formability and springback of metallic bipolar plate should be performed before making stamping die sets. In this work, the methodology for determining the allowable draft angle of flow passage is introduced by using finite element analysis. In analysis results, as the draft angle of flow passage increase, the major strain and thinning is increase with exponential function. The allowable draft angle without fracture is presented by fitting the results. Additionally, the staking results with manufactured metallic bipolar plates by stamping process is presented.

  • PDF

Design of the Actuator of Shaft Sliding Type for an Optical Pick-up to Switch an Objective Lens (대물렌즈 전환식 축습동형 광학픽업용 엑츄에이터 설계)

  • Choi, Young-Suk
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.36T no.2
    • /
    • pp.32-41
    • /
    • 1999
  • The design method that the structure of double actuators of read-only or read-writable DVD optical pick-up of high density can be compact into the structure of one actuator, is proposed. The designed actuator has the structure of the shaft sliding type in which the moving part can be rotated about the shaft accord to a used optical disc and an objective lens can be switched, and is suspended with magnetic spring. In this actuator, Coulomb's friction is used as damping force and the moving part is designed by finite element method so that the second natural vibration mode can not occur within the servo band. The mock-up of the actuator designed in this paper is made, and its dynamic characteristics is measured and estimated.

  • PDF

Numerical Simulation for Pressing Process of Hot glass (고온 유리의 프레스 성형 공정 시뮬레이션)

  • Ji Suk Man;Choi Joo Ho;Kim Jun Bum;Ha Duk Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.5 s.170
    • /
    • pp.205-213
    • /
    • 2005
  • This paper addresses a method for numerical simulation in the pressing process of hot glass. Updated Lagrangian finite element formulations are employed for the flow and energy equations to accommodate moving meshes. The model is assumed axi-symmetric and creep flow is assumed due to the high viscosity. Commercial software ANSYS is used to solve the coupled flow and energy equations. Moving contact points as well as free surface during the pressing are effectively calculated and updated by utilizing API functions of CAD software Unigraphics. The mesh distortion problem near the wall is overcome by automatic remeshing, and the temperatures of the new mesh are conveniently interpolated by using a unique function of ANSYS. The developed model is applied to the pressing process of TV glasses. In conclusion, the presented method shows that the pressing process accompanying moving boundary can be simulated by effectively combining general purpose software without resorting to special dedicated codes.

Effect of Foundation Flexibility of Offshore Wind Turbine on Force and Movement at Monopile Head (해상풍력발전기 기초구조물의 강성이 모노파일 두부의 부재력 및 변위에 미치는 영향)

  • Jung, Sungmoon;Kim, Sung-Ryul;Lee, Juhyung;Le, Chi Hung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.4
    • /
    • pp.21-31
    • /
    • 2014
  • Recently, the research on renewable energy against depletion of fossil fuel have been actively carried out in the world. Especially, offshore wind turbines are very economical and innovative technology. However, offshore wind turbines experience large base moments due to the wind and wave loading, so the monopile with large diameter needs to be applied. For the economical design of the large diameter pile, it is important to consider the flexibility of the foundation to estimate the maximum moment accurately, based on studies conducted so far. In this paper, the foundation was modeled using the finite element method in order to better describe the large diameter effect of a monopile and the results were compared with those of p-y method. For the examples studied in this paper, the change in maximum moment was insignificant, but the maximum tilt angle from the finite element method was over 14% larger than that of p-y method. Therefore, the finite element approach is recommended to model the flexibility effect of the pile when large tilt angles may cause serviceability issues.

Numerical Analysis of Incompressible Viscous Flow with Free Surface Using Pattern Filling and Refined Flow Field Regeneration Techniques (형상충전기법과 세분화된 유동장 재생성기법을 이용한 자유표면을 가진 비압축성 점성유동의 수치적 모사)

  • Jeong, Jun-Ho;Yang, Dong-Ryeol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.3
    • /
    • pp.933-944
    • /
    • 1996
  • In this paper, two new techniques, the pattern filling and the refined flow field regeneration, based on the finite element method and Eulerian mesh advancement approach have been developed to analyze incompressible viscous flow with free surfaces. The gorerning equation for flow analysis is Navier-Stokes equation including inertia and gravity effects. The penalty and Newton-Raphson methods are used effectively for finite element formulation. The flow front surface and the volume inflow rate are calculated using the pattern filling technique to select an adequate pattern among five filling patterns at each quadrilateral control volume. By the refined flow field regeneration technique, the new flow field which renders better prediction in flow surface shape is generated and the velocity field at the flow front part is calculated more exactly. Using the new thchniques to be developed, the dam-breaking problem has been analyzed to predict flow phenomenon of fluid and the predicted front positions versus time have been compared with the reported experimental result.