• Title/Summary/Keyword: 유출수 예측

Search Result 918, Processing Time 0.035 seconds

Development of One-dimensional Distributed Rainfall-Runoff Model fully Coupled with GIS (GIS와 완전 연계된 1차원 분포형 강우-유출 모형 개발)

  • Choi, Yun-Seok;Kim, Kyung-Tak;Lee, Jin-Hee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.719-723
    • /
    • 2008
  • 도달시간이 짧은 중소유역의 홍수예측과 돌발호우에 의한 돌발홍수의 예측을 위해서는 단기 예측 강우를 활용하는 기술이 필수적이라고 할 수 있다. 본 연구에서는 예측 강우를 이용한 신속하고 정확한 유출모의를 수행하는 과정으로서, 수치예보자료와 레이더 강우와 같이 격자 형태로 제공되는 강우자료를 직접 이용하여 유출모의가 가능한 1차원 분포형 강우-유출 모형을 개발하고자 한다. 본 연구에서 개발하고자 하는 모형은 모형의 입출력, 유출분석 모듈 등과 같은 모든 과정을 GIS 시스템과 완전 연계하고자 하며, 이를 통해서 그리드 형태로 제공되는 강우 시계열 자료와 공간자료를 화면상에서 조회할 수 있으며, 이를 모형의 입력자료로 직접 이용하고, 모의결과 또한 유역 내에서 공간 분포된 행태로 제시할 수 있다. 본 논문에서는 이와 같은 모형의 유출해석 과정과 이론적 검증 결과를 개략적으로 소개하고자 한다.

  • PDF

Development of Rainfall-Runoff Forecasting System (RRFS) for Water Resources Management in a Basin (유역의 수자원 관리를 위한 유역 유출 예측 시스템(RRFS)의 개발)

  • Jeong, Woo-Chang;Ryoo, Kyong-Sik;Hwang, Man-Ha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.188-193
    • /
    • 2007
  • 유역 유출 예측 시스템(Rainfall Runoff Forecasting System. RRFS)는 유역의 강우-유출 관계의 정성적 및 정량적 분석을 위한 도구로서 개발되었다. RRFS는 다음과 같이 가지 주요 모듈로 구성되어 있다: 1) 실시간 수문학적 입력자료 구축 모듈, 2) 예측된 기상학적 자료에 근거하여 단기간 용수 수요와 공급을 제공하기 위한 유출 모의와 예측 모듈, 3) 저수지 운영에 있어 장기간의 용수공급을 설정하기 위한 유출예측 모듈 그리고 4) 유출 모의와 예측의 결과에 대한 그래픽 처리 모듈 본 연구에서 개발된 RRFS의 보정과 검증은 금강유역에의 적용을 통해 수행되었으며, 적용된 결과 금강유역의 수자원 현황 파악 및 용수공급의 전망을 설정하는데 있어 매우 만족스러운 결과를 보여주었다. 따라서 유역의 수자원 이용 및 공급 계획의 수립에 필요한 다양한 유출 정보를 제공하는 효율적인 도구로서 이용될 수 있을 것으로 판단된다.

  • PDF

Flood Analysis Using Distributed Runoff Model in Moutainous Watershed (산지하천 유역에서의 분포형 유출모형을 통한 홍수 해석)

  • Kim, Seung-Joo;Choi, Chang-Won;Yi, Jae-Eung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1274-1278
    • /
    • 2010
  • 우리나라는 국토의 60% 이상이 산지로 구성되어 있다. 현재 국내에서는 홍수유출 해석 시 집중형 모형을 주로 이용하고 있다. 집중형 모형은 대개 유역 최하류 지점의 유출구를 기준으로 홍수유출 해석 모형의 매개변수 추정 및 검증이 이루어지며, 유역의 매개변수를 소유역별로 동일하게 가정하여 입력 자료를 구성한다. 따라서 산지하천 유역의 홍수유출 해석 및 예측 시 경사가 급하고 고도가 높으며 집중시간이 빠른 산지하천의 지형적 요소 및 특징을 적절히 고려하지 못하여 정확한 예측 및 해석을 하는데 어려움이 발생한다. 분포형 모형은 하나의 유출구가 아닌 임의의 지점에서 홍수유출 해석이 가능하며, 강우자료 입력 시 유역 평균강우가 아닌 분포형 강우, 즉 역거리자승법, 크리깅 기법 등을 사용하여 분포형 강우로 변환한 지점강우와 레이더 강우를 사용하여 보다 정확한 홍수유출 해석이 가능하다. 그리고 분포형 모형은 입력하는 모든 매개변수를 지형 자료에서 추출하여 사용하기 때문에 인공적인 해석을 배제할 수 있어 인위적인 오차를 줄일 수 있다. 본 연구에서는 평창강 상류유역을 시험유역으로 선정하여 연구를 수행하였으며, 분포형 모형의 하나인 $Vflo^{TM}$를 사용하여 홍수유출해석을 수행하였다. 지형자료만을 사용하여 특정 지점이 아닌 유역 내 임의 지점의 홍수유출량과 집중시간, 홍수위를 산정할 수 있어 산지하천에서 돌발적으로 발생하는 홍수를 신속하게 예측할 수 있었다. 또한 임의의 지점에서의 설계홍수량을 손쉽게 산정하여 수공구조물 설계 시 이용할 수 있으므로 홍수에 의한 인적 물적 피해를 최소할 할 수 있을 것으로 기대된다.

  • PDF

A Study on the Development and Application of Rainfall-Runoff Prediction Method Using Dynamic Wave-Based Instantaneous Unit Hydrograph (동역학파 기반 순간단위도를 이용한 강우-유출 예측기법의 개발 및 적용에 관한 연구)

  • Jeong, Minyeob;Kim, Dae-Hong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.98-98
    • /
    • 2021
  • 동역학파 기반 순간단위도 (Dynamic wave-based Instantaneous Unit Hydrograph)를 이용하여 유역에서의 강우에 의한 유출을 예측하는 기법을 개발하였으며, 국내 실제 자연 유역에 적용하여 기법의 타당성과 적용성을 검증하였다. 본 연구에서 제시한 '동역학파 기반 순간단위도 방법'은 물리기반 수치모형인 동역학파 강우유출모형과 개념적 순간단위도 방법을 결합하여 사용함으로써 물리적으로 정확하면서도 빠르고 안정적으로 강우-유출을 예측하는 것을 목적으로 한다. 유역의 순간단위도는 유역의 지형, 조도계수와 동역학파 강우유출모형인 tRIBS-OFM을 이용하여 계산된 S-수문곡선을 수치적으로 미분함으로써 유도되며, 유도된 순간단위도는 강우강도에 따라 변화하므로 회선적분을 통한 유출수문곡선 예측 시 강우-유출 관계의 비선형성을 고려할 수 있다. 본 연구에서 유도된 순간단위도의 첨두 값과 첨두 발생시간은 강우강도 값과 각각 양과 음의 상관관계를 가졌으며 강우강도 값과 멱 함수 (power function)의 관계를 가졌다. 이는 Paik and Kumar (2004) 등 기존 연구들에서 밝힌 순간단위도의 특성과 일치하였으며, 본 연구에서는 더 나아가 멱함수의 지수를 산정한 후 임의의 강우강도 값에 대응하는 순간단위도를 멱함수 관계를 이용하여 보간할 수 있는 방법을 제시하였다. 실제 유역에 대한 적용은 강원도 인제군에 위치한 내린천 유역을 대상으로 수행하였다. 유역을 여러 개의 소유역으로 분할하여 강우의 공간적 분포를 고려하였으며, 각 소유역에서의 유출량을 동역학파 기반 순간단위도를 이용해 계산한 뒤 물리기반의 하도추적모형을 이용하여 전체 유역에서의 유출수문곡선을 예측했다. 예측된 유출수문곡선을 관측 유출 자료와 비교해본 결과 NSE (Nash-Sutcliffe model efficiency coefficient)가 0.6 이상으로 측정되어 적절히 유출을 예측한 것으로 판단되었다.

  • PDF

Development of Rainfall-Runoff Prediction Model for Self Organizing Map (SOM에 강우-유출 예측모형 개발에 관한 연구)

  • Kim, Yong-Gu;Jin, Young-Hoon;Lee, Han-Min;Park, Sung-Chun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.301-306
    • /
    • 2006
  • 본 연구에서는 강우의 시 공간적 분포의 불규칙한 변동성을 고려한 강우-유출예측을 위해 인공신경망(Artificial Neural Networks: ANNs)의 기법의 일종인 자기조직화(Self Organizing Map: SOM) 이론과 역전파 학습 알고리즘(Back Propagation Algorithm: BPA) 이론을 복합적으로 이용하였다. 기존의 인공신경망 연구에서 야기된 저..갈수기의 유출량에 대한 과대평가, 홍수기의 유출량에 대한 과소평가, 예측값이 선행 유출량의 지속성을 갖는 Persistence 현상을 해결하기 위하여 패턴분류 성능을 지닌 SOM 이론을 도입하여 예측모형의 전처리 과정으로 이용하였다. 이는 기존의 인공신경망 모형이 하나의 모형을 구성하여 유출량의 전 범위에 해당하는 자료를 예측하는 방법을 개선한 것으로 SOM에 의해 패턴이 분류된 강우-유출관계의 각 패턴별 예측모형을 통해 분류된 자료들의 예측을 수행하는 방법이다. 이와 같이 SOM을 강우-유출예측모형의 전처리과정으로 이용함으로서 기존의 인공신경망 연구에서 야기된 현상들을 해결할 수 있었고, 예측력 또한 기존의 인공신경망 모형의 결과에 비해 우수하였다.

  • PDF

Study on Water Stage Prediction using Neuro-Fuzzy with Genetic Algorithm (Neuro-Fuzzy와 유전자알고리즘을 이용한 수위 예측에 관한 연구)

  • Yeo, Woon-Ki;Seo, Young-Min;Jee, Hong-Kee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.382-382
    • /
    • 2011
  • 최근의 극심한 기상이변으로 인하여 발생되는 유출량의 예측에 관한 사항은 치수 이수는 물론 방재의 측면에서도 역시 매우 중요한 관심사로 부각되고 있다. 강우-유출 관계는 유역의 수많은 시 공간적 변수들에 의해 영향을 받기 때문에 매우 복잡하여 예측하기 힘든 요소이며, 과거에는 추계학적 예측모형이나 확정론적 예측모형 혹은 경험적 모형 등을 사용하여 유출량을 예측하였으나 최근에는 인공신경망과 퍼지모형 그리고 유전자 알고리즘과 같은 인공지능기반의 모형들이 많이 사용되고 있다. 하지만 유출량을 예측하고자 할 때 학습자료 및 검정자료로써 사용되는 유출량은 수위-유량 관계곡선식으로부터 구하는 경우가 대부분으로 이는 이렇게 유도된 유출량의 경우 오차가 크기 때문에 그 신뢰성에 문제가 있을 것으로 판단된다. 따라서 본 논문에서는 수위를 직접 예측함으로써 이러한 오차의 문제점을 극복 하고자 한다. Neuro-Fuzzy 모형은 과거자료의 입 출력 패턴에서 정보를 추출하여 지식으로 보유하고, 이를 근거로 새로운 상황에 대한 해답을 제시하도록 하는 인공지능분야의 학습기법으로 인간이 과거의 경험과 훈련으로 지식을 축적하듯이 시스템의 입 출력에 의하여 소속함수를 최적화함으로서 모형의 구조를 스스로 조직화한다. 따라서 수학적 알고리즘의 적용이 어려운 강우와 유출관계를 하천유역이라는 시스템에서 발생된 신호체계의 입 출력패턴으로 간주하고 인간의 사고과정을 근거로 추론과정을 거쳐 수문계의 예측에 적용할 수 있을 것이다. 유전자 알고리즘은 적자생존의 생물학 원리에 바탕을 둔 최적화 기법중의 하나로 자연계의 생명체 중 환경에 잘 적응한 개체가 좀 더 많은 자손을 남길 수 있다는 자연선택 과정과 유전자의 변화를 통해서 좋은 방향으로 발전해 나간다는 자연 진화의 과정인 자연계의 유전자 메커니즘에 바탕을 둔 탐색 알고리즘이다. 즉, 자연계의 유전과 진화 메커니즘을 공학적으로 모델화함으로써 잠재적인 해의 후보들을 모아 군집을 형성한 뒤 서로간의 교배 혹은 변이를 통해서 최적 해를 찾는 계산 모델이다. 이러한 유전자 알고리즘은 전역 샘플링을 중심으로 한 수법으로 해 공간상에서 유전자의 개수만큼 복수의 탐색점을 설정할 뿐만 아니라 교배와 돌연변이 등으로 좁아지는 탐색점 바깥의 영역으로 탐색을 확장할 수 있기 때문에 지역해에 빠질 위험성이 크게 줄어든다. 따라서 예측과 패턴인식에 강한 뉴로퍼지 모형의 해 탐색방법을 유전자 알고리즘을 사용한다면 보다 정확한 해를 찾는 것이 가능할 것으로 판단된다. 따라서 본 논문에서는 선행우량 및 상류의 수위자료로부터 하류의 단시간 수위예측에 관해 연구하였으며, 이를 위해 유전자 알고리즘을 이용항여 소속함수를 최적화 시키는 형태의 Neuro-Fuzzy모형에 대하여 연구하였다.

  • PDF

Study on Water Stage Prediction by Artificial Neural Network and Genetic Algorithm (인공신경망과 유전자알고리즘을 이용한 수위예측에 관한 연구)

  • Yeo, Woon-Ki;Jee, Hong-Kee;Lee, Soon-Tak
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1159-1163
    • /
    • 2010
  • 최근의 극심한 기상이변으로 인하여 발생되는 유출량의 예측에 관한 사항은 치수 이수는 물론 방재의 측면에서도 역시 매우 중요한 관심사로 부각되고 있다. 강우-유출 관계는 유역의 수많은 시 공간적 변수들에 의해 영향을 받기 때문에 매우 복잡하여 예측하기 힘든 요소이다. 과거에는 추계학적 예측모형이나 확정론적 예측모형 혹은 경험적 모형 등을 사용하여 유출량을 예측하였으나 최근에는 인공신경망과 퍼지모형 그리고 유전자 알고리즘과 같은 인공지능기반의 모형들이 많이 사용되고 있다. 하지만 유출량을 예측하고자 할 때 학습자료 및 검정자료로써 사용되는 유출량은 수위-유량 관계곡선식으로부터 구하는 경우가 대부분으로 이렇게 유도된 유출량의 경우 오차가 크기 때문에 그 신뢰성에 문제가 있을 것으로 판단된다. 따라서 본 논문에서는 선행우량 및 수위자료로부터 단시간 수위예측에 관해 연구하였다. 신경망은 과거자료의 입 출력 패턴에서 정보를 추출하여 지식으로 보유하고, 이를 근거로 새로운 상황에 대한 해답을 제시하도록 하는 인공지능분야의 학습기법으로 인간이 과거의 경험과 훈련으로 지식을 축적하듯이 시스템의 입 출력에 의하여 연결강도를 최적화함으로서 모형의 구조를 스스로 조직화하기 때문에 모형의 구조에 적합한 최적 매개변수를 추정할 수 있다. 따라서 정확한 예측이 어려운 하천수위를 과거의 자료로 부터 학습된 신경망의 수학적 알고리즘을 통해 유출량의 예측에 적용할 수 있을 것이다. 유전자 알고리즘은 적자생존의 생물학 원리에 바탕을 둔 최적화 기법중의 하나로 자연계의 생명체 중 환경에 잘 적응한 개체가 좀 더 많은 자손을 남길 수 있다는 자연선택 과정과 유전자의 변화를 통해서 좋은 방향으로 발전해 나간다는 자연 진화의 과정인 자연계의 유전자 메커니즘에 바탕을 둔 탐색 알고리즘이다. 즉, 자연계의 유전과 진화 메커니즘을 공학적으로 모델화함으로써 잠재적인 해의 후보들을 모아 군집을 형성한 뒤 서로간의 교배 혹은 변이를 통해서 최적 해를 찾는 계산 모델이다. 따라서 본 연구에서는 인공신경망의 가중치를 유전자 알고리즘에 의해 최적화시킨후 오류역전파알고리즘에 의해 신경망의 학습을 진행하는 모형으로 감천유역의 선산수위표지점의 수위를 1시간~6시간까지 예측하였다.

  • PDF

A Study on the prediction method of flooded area in rural watershed using runoff characteristics and inundation DB (농촌유역에 대한 SWMM모형의 유출특성과 침수DB를 이용한 침수면적 예측방법에 관한 연구)

  • Hwang, Sung-Hwan;Chun, Soo-Bin;Choi, Ji-Hyeok;Moon, Young-Il
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.31-31
    • /
    • 2018
  • 본 연구는 내수침수에 의한 침수면적 예측을 위하여 1차원 유출모형의 유출특성을 이용하여 침수면적 예측방법의 최적화이다. 2017년 강우의 초기강우와 첨두강우 특성을 적용한 경우에 정확한 침수면적 추정이 가능한 것을 확인한 바가 있다. 이러한, 결과에 추가적으로 SWMM 모형의 유출결과 자료의 특성인자를 이용하여 침수DB를 선택한 경우에 침수면적 예측 정확도를 분석하였다. 강우지속시간 및 강우량의 변화에 따른 유출결과의 변화를 분석하여 강우특성에 따른 SWMM 모형의 노드별 유출결과의 특성인자 변화를 분석하여 침수DB에서 실제 침수면적 선정방법을 정리하였다. 정리된 방법을 이용하여 유출결과 자료 특성인자를 이용한 최적의 침수DB 선정방법을 돌출하였다. 강우 특성 인자에서 침수DB를 선정하는 방법과 비교하여 강우유출모형의 모의결과를 이용한 경우에 약 6,000여개 노드를 기준으로 5~10분의 모의시간이 추가적으로 소요되어 실시간 침수 DB 선정에는 어렵지만, 준실시간 실제 유출량을 고려한 침수DB 선정이 가능할 것이다. 따라서, 강우특성 도출에 따라 1차적으로 침수DB를 선정하고, 강우유출모형의 유출 특성에 따라서 2차적으로 침수DB를 선정한다면, 예경보 시스템에서 대응시간 확보와 예측 정확도 유지에 긍정적인 방안으로 도입될 수 있을 것이다. 침수DB 구축은 많은 침수면적 산정연구에 이용하였던 TUFLOW 모형을 이용하여 침수DB를 구축하였다. SWMM 모형을 이용하여 강우유출을 모의하고, 침수면적을 TUFLOW를 이용하여 구축한 다양한 호우사상에 대한 침수DB를 이용하여 준실시간 침수면적 예측하는 방법은 향후, 예경보 시스템 구축에 이바지 할 수 있을 것입니다.

  • PDF

A study on the uncertainty analysis of LENS-GRM using formal and informal likelihood measure (정형·비정형 우도를 이용한 LENS-GRM 불확실성 해석)

  • Lee, Sang Hyup;Choo, Inn Kyo;Yu, Yeong Uk;Jung, Younghun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.317-317
    • /
    • 2020
  • 수재해는 수자원 인프라의 부족 및 관리 미흡 등 많은 요인들이 있지만 강우의 유무와 크기가 가장 원초적인 요인들 중 하나이다. 정확한 강우량 추정 및 강우발생시간 예측은 수재해로 인한 피해를 예방하고 빠르게 대처할 수 있다. 그러나 강우예측에는 많은 불확실성을 내포하고 있기 때문에 이러한 불확실성을 이해하고 줄여 나가는 것이 필요하다. 최근 컴퓨터의 성능의 발전에 비례해 강우 예측 자료들도 점진적으로 발전을 거듭하고 있다. 이를 강우-유출 모형에 적용시 유출량 예측의 정확성 또한 비례하여 한층 더 발전할 수 있을 것이다. 하지만 신뢰성이 낮은 입력자료를 대상으로 하는 유출해석 모형은 많은 불확실성을 내포할 것이다. 따라서 본 연구에서는 위천 유역에 대해 LENS(Limited area ENsemble prediction System) 강우앙상블 예측자료의 적용성을 검토하고 그리드 기반 강우 유출 모델 GRM(Grid based Rainfall-runoff Model) 에 적용하여 유출예측의 불확실성을 평가하고자 하였다. 또한 강우예측 및 유출예측은 수 많은 매개변수를 포함하며 최종적인 예측은 더 큰 불확실한 범위로 산출될 수 있다. 이에 따라 본 연구에서는 Python3 기반 코딩으로 LENS 자료 구축 및 GRM 모형의 매개변수 보정을 각 2000회 씩에 걸쳐 총 2회 실시하여 수문학적, 지형학적 인자에 따른 불확실성 범위를 보정하고자 하였다. 매개변수의 보정은 비정형우도(Informal likelihood) NSE, 정형우도(Formal likelihood) Lognormal(Log-likelihood function)의 우도에 따른 행위모델을 산정하여 보정하였다. 따라서 본 연구에서는 선행연구들을 참고한 정형, 비정형 우도의 임계치를 이용한 불확실성해석에 적용하였으며 이는 사용자의 행위모델선정 임계치 범위 선정으로 인한 불확실성을 줄여나감에 기여할 수 있을것으로 사료된다.

  • PDF

Development of Very Short-term Rainfall-Runoff Forecast system Using Radar and Rainfall Numerical Weather Prediction Data (레이더 및 강우수치예보자료를 이용한 초단기강우-유출예측시스템 개발)

  • Park, Jin-Hyeog;Kang, Boo-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.281-285
    • /
    • 2007
  • 본 연구에서는 보다 신뢰성 있고 정확한 정량적 강우예측자료를 생성하기 위하여 레이더강우 및 강우수치예보자료를 합성하는 기법을 제시하였고, 레이더 전처리 및 예측시스템, GIS와 연계한 물리적기반의 분포형모형인 Vflo모형 등 최신 수자원 IT기술을 활용하여 홍수기 돌발홍수에 대응한 초단기 정량적 강우-유출예측을 목적으로 향후 실시간으로 적용 가능한 분포형유출예측시스템의 기반을 구축하고자 하였다. 대상유역은 국지적인 고해상도 지형효과를 고려한 QPM이 개발되어 있는 금강권역의 용담댐유역이며, 예측 강우에 대한 호우사상은 2005년 이후 발생한 3개 강우사상을 대상으로 하였다. 한편, 기상 레이더 자료로부터 산정된 강수량의 수문학적 적용을 위하여 DEM, 토지피복도, 토양도 등의 기본 GIS자료들을 수집 및 구축하였고 물리적기반의 분포형모형(Vflo)의 입력인자로 사용하기 위한 12개의 공간분포형 수문매개변수들을 대표적인 GIS 소프트웨어인 ArcGIS 및 ArcView를 활용하여 추출하였으며, Vflo모형의 현업 적용가능성을 오프라인 상에서 검증해보았다. 모형 검증결과, GIS를 이용한 지형, 토양, 토지피복과 같은 물리적 특성을 사용한 모형의 초기 설정을 향상시킴에 의해 첨두유량, 유출량, 첨두도달시간차 등에서 만족할만한 결과를 보여주었다고 사료된다. 레이더 및 수치예보자료와 합성한 4가지의 형태(QPE, JQPE, QPM, BQPF)의 분포형 입력강우를 이용하여 적용해 본 결과 Nowcasting기법을 이용한 JQPF는 자료의 특성상 초기 1시간30분동안은 비교적 양호한 결과를 얻었으나 3시간 전후로 가면서 예측강우의 질이 저하되기 시작하였으나 QPM을 합성함으로써 생산한 BQPF는 보다 신뢰성있고 양호한 결과를 얻을 수 있었다. 이러한 결과들은 향후 정량적 분포형강우 예측을 이용한 실시간 홍수유출 예측시 댐운영자는 리드타임(홍수선행시간)을 충분히 확보함으로서 안정적이고 예측 가능한 홍수조절을 하는데 도움을 줄 수 있을 것으로 기대된다. 이와 같이 다양한 단기저수지 유입량의 예측정보 제공으로 다목적댐 저수지 운영모형의 효용성을 제고하여 향후 실제 저수지 유입량 예측에 이용함으로써 저수지 단기운영효율 개선에 기여할 수 있을 것으로 사료된다.

  • PDF