• Title/Summary/Keyword: 유체-구조 연계 기법

Search Result 35, Processing Time 0.019 seconds

Flow and Scour Analysis Around Monopole of Fixed Offshore Platform Using Method that Couples Computational Fluid Dynamics and Discrete Element Method (CFD-DEM 연계기법을 활용한 고정식 해양구조물의 모노파일 주위 유동 및 세굴해석)

  • Song, Seongjin;Jeon, Wooyoung;Park, Sunho
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.3
    • /
    • pp.245-251
    • /
    • 2019
  • When an offshore foundation is exposed to waves and currents, local scour could develop around a pile and even lead to structural failure. Therefore, understanding and predicting the scour due to sediment transport around foundations are important in the engineering design. In this study, the flow and scour around a monopole foundation exposed to a current were investigated using a method that coupled the computational fluid dynamics (CFD) and discrete element method (DEM). The open source computation fluid dynamics library OpenFOAM and a sediment transport library were coupled in the OpenFOAM platform. The incipient motion of the particle was validated. The flow fields and sediment transport around the monopole were simulated. The scour depth development was simulated and compared with existing experimental data. For the upstream scour hole, the equilibrium scour depth could be reproduced qualitatively, and it was underestimated by about 23%.

Nonlinear Simulation of Flutter Flight Test with the Forced Harmonic Motion of Control Surfaces (조종면 강제 조화운동을 고려한 비선형 플러터 비행시험 모사)

  • Yoo, Jae-Han;Kim, Dong-Hyun;Kwon, Hyuk-Jun;Lee, In;Kim, Young-Ik;Lee, Hee-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.6
    • /
    • pp.92-100
    • /
    • 2002
  • In this study, transonic/supersonic nonlinear flutter analysis system of a complete aircraft including forced harmonic motion pf control surfaces has been effectively developed using the modified transonic small disturbance (TSD) equation. To consider the nonlinear effects, the coupled time marching method (CTM) combining computational structural dynamics (CFD) has been directly applied for aeroelastic computations. The grid system for a complex full aircraft configuration is effectively generated by the developed inhouse code. Intransonic and supersonic flight regimes, the characteristics of static and dynamic aeroelastic effect has been investigated for a complete aircraft model. Also, nonlinear flutter flight simulations for the forced harmonic motion of control surfaces are practically presented in detail.

Structural Optimization of Heat Dissipating Structure with Forced Convection (강제 대류가 있는 열소산 구조물의 구조최적설계)

  • Yoon, Gil-Ho;Kang, Nam-Cheol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.1
    • /
    • pp.51-57
    • /
    • 2009
  • In this study, a new topology optimization method is developed to design heat-dissipating structure with forced convection. To cool down electrical devices or mechanical machines, two types of convection models have been widely used: the natural convection model with a large Archimedes number and the forced convection with a small Archimedes number. In these days, lots of engineering application areas such as electrochemical conversion devices (Fuel cell) or rocket propulsion engines adopt the forced convection to dissipate the generated heat. Therefore, to our knowledge, it becomes an important issue to design flow channels inside which the generated heat dissipate. Thus, this paper studies optimal topological designs considering fluid-heat interactions. To consider the effect of the advection in the heat transfer problem, the incompressible Navier-stokes equation is solved. This paper numerically studies the coupling phenomena and presents optimal channel design considering forced convection.

Direct Time Domain Method for Nonlinear Earthquake Response Analysis of Dam-Reservoir Systems (댐-호소계 비선형 지진응답의 직접시간영역 해석기법)

  • Lee, Jin-Ho;Kim, Jae-Kwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.11-22
    • /
    • 2010
  • An analysis method is proposed for the transient linear or nonlinear analysis of dynamic interactions between a flexible dam body and reservoir impounding compressible water under earthquake loadings. The coupled dam-reservoir system consists of three substructures: (1) a dam body with linear or nonlinear behavior; (2) a semi-infinite fluid region with constant depth; and (3) an irregular fluid region between the dam body and far field. The dam body is modeled with linear and/or nonlinear finite elements. The far field is formulated as a displacement-based transmitting boundary in the frequency domain that can radiate energy into infinity. Then the transmitting boundary is transformed for the direct coupling in the time domain. The near field region is modeled as a compressible fluid contained between two substructures. The developed method is verified and applied to various earthquake response analyses of dam-reservoir systems. Also, the method is applied to a nonlinear analysis of a concrete gravity dam. The results show the location and severity of damage demonstrating the applicability to the seismic evaluation of existing and new dams.

Life Assessment of Gas Turbine Blade Based on Actual Operation Condition (실 운전조건을 고려한 가스터빈 블레이드 수명평가)

  • Choi, Woo Sung;Song, Gee Wook;Chang, Sung Yong;Kim, Beom Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.10
    • /
    • pp.1185-1191
    • /
    • 2014
  • Gas turbine blades that have complex geometry of the cooling holes and cooling passages are usually subjected to cyclic and sustained thermal loads due to changes in the operating characteristic in combined power plants; these results in non-uniform temperature and stress distributions according to time to gas turbine blades. Those operation conditions cause creep or thermo-mechanical fatigue damage and reduce the lifetime of gas turbine blades. Thus, an accurate analysis of the stresses caused by various loading conditions is required to ensure the integrity and to ensure an accurate life assessment of the components of a gas turbine. It is well known that computational analysis such as cross-linking process including CFD, heat transfer and stress analysis is used as an alternative to demonstration test. In this paper, temperatures and stresses of gas turbine blade were calculated with fluid-structural analysis integrating fluid-thermal-solid analysis methodologies by considering actual operation conditions. Based on analysis results, additionally, the total lifetime was obtained using creep and thermo-mechanical damage model.