• Title/Summary/Keyword: 유체-구조 연계 기법

Search Result 35, Processing Time 0.028 seconds

Vibration Analysis of a Turbo-Machinery Blade Considering Rotating and Flow Effect (회전 및 유동효과를 고려한 터보기계 블레이드의 진동해석)

  • Joung, Kyu-Kang;Shin, Seung-Hoon;Park, Hee-Yong;Kim, Dong-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.519-522
    • /
    • 2010
  • Flow-induced vibration analyses have been conducted for a 3D compressor blade model. Advanced computational analysis system based on computational fluid dynamics(CFD) and computational structural dynamics has been developed in order to investigate detailed dynamic responses of designed compressor blades. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of the 3D compressor blade for fluid-structure interaction problems. Detailed dynamic responses and instantaneous pressure contours on the blade surfaces considering flow-separation effects are presented to show the multi-physical phenomenon of the rotating compressor blade.

  • PDF

Transient Response Analysis of Cylindrical Liquid Fuel-Storage Tank subject to Initial Acceleration (원통형 액체 연료탱크의 초기 가속에 따른 과도응답 해석)

  • Lee, S.Y.;Joo, Y.S.;Kim, K.W.;Cho, J.R.
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.475-480
    • /
    • 2000
  • The transient dynamic-response analysis of fuel-storage tanks of flying vehicles accelerating in the vertical direction is achieved with finite element method. A fuel-storage tank is a representative example of the fluid-structure interaction problem, in which structure and fluid media interact strongly. For the accurate analysis of this complicated fluid-structure system, we employed ALE(arbitrary Lagrangian-Eulerian) coupling method. Two types of fuel-storage tanks, one with two baffles and the other without baffle, are considered to examine the effect of baffles. The fuel-storage tank with baffles shows more uniform hydrodynamic pressure distribution, resulting effective stress in structural region and faster convergence from transient to steady states. MSC/Dytran, a commercial FEM software for the 3D coupled dynamic analysis, is used for this analysis.

  • PDF

A Study on the Structural Integrity of Hypersonic Vehicles According to Flight Conditions (비행 환경에 따른 극초음속 비행체의 구조 건전성에 관한 연구)

  • Kang, Yeon Cheol;Kim, Gyubin;Kim, Jeong Ho;Cho, Jin Yeon;Kim, Heon Ju
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.10
    • /
    • pp.695-704
    • /
    • 2019
  • In hypersonic regime, the complicated interaction between the air and surface of aircraft results in intensive aerodynamic heating on body. Provided this phenomenon occurs on a hypersonic vehicle, the temperature of the body extremely increases. And consequently, thermal deformation is produced and material properties are degraded. Furthermore, those affect both the aerothermoelastic stability and thermal safety of structures significantly. With the background, thermal safety and dynamic stability are studied according to the altitude, flight time and Mach number. Based on the investigation, design guideline is suggested to guarantees the structural integrity of hypersonic vehicles in terms of both of thermal safety and dynamic stability.

A Quasi-Steady Method for Unsteady Flows over Surfaces with Structural Deformation (구조 변형이 있는 평면 위의 비정상 유동해석을 위한 준-정상 기법)

  • Kim, Minsoo;Lee, Namhun;Lee, Hak-Tae;Lee, Seungsoo;Kim, Heon-Ju
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • In this paper, we present and verify an aerodynamic reduced-order model (ROM) based on a quasi-steady flow method to reduce the computational cost of supersonic aeroelastic analysis. For supersonic flows, especially when the characteristic time scale of the flow is small compared to that of the structural motion, the unsteadiness of flow can be negligible, and quasi-steady solutions can be used instead of the unsteady solutions for the aeroelastic analysis. Kriging method is used to build the ROM of the aerodynamics. The surface solutions from the ROM are used as the boundary conditions for the structural analysis at each time-step. The ROM is validated against the unsteady solutions.

Flutter Suppression of a 3-DOF Airfoil Using CFD/CSD with Integrated Optimal Control Method (CFD/CSD 및 최적제어기법을 연계한 3-자유도계 에어포일의 플러터 억제)

  • Kim, Dong-Hyun;Kim, Hyun-Jung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.929-929
    • /
    • 2005
  • In this study, computational demonstrations for the flutter suppression are presented for the 3-DOF airfoil system with oscillating flap. Advanced computational methods such as computational fluid dynamics (CFD) and computational structural dynamics (CSD) are used and a simultaneous coupling method has been developed to accurately conduct flutter analyses. In addition, optimal control theory is integrated into the CFD based flutter analysis method to construct the coupled aeroservoelastic analysis system for the airfoil with oscillating flap. For a well-defined typical section model, fundamental unsteady aerodynamics and flutter characteristics are investigated. Finally, to show the effectiveness of flutter control the physical aeroelastic responses are directly compared between the open loop and the closed loop systems.

  • PDF

Electromagnetic Characteristics of Dielectric Barrier Discharge Plasma Based on Fluid Dynamical Modeling (유체역학에 바탕한 플라즈마 모델링을 통한 유전체 장벽 방전 플라즈마의 전파 특성 해석)

  • Kim, Yu-Na;Oh, Il-Young;Hong, Yong-Jun;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.3
    • /
    • pp.331-336
    • /
    • 2013
  • In this paper, plasma modeling is achieved using fluid dynamics, thereby electron density is derived. The way proposes the key to overcoming the limitations of conventional researches which adopt simplified plasma model. The result is coupled with Maxwell-Boltzmann system in order to calculate scattering waves in various incident angle. The first part is dedicated to perform plasma modeling in dielectric barrier discharge(DBD) structure. Suzen-Huang model is adopted among various models due to the fact that it uses time independent variables to calculated potential and electron distribution in static system. The second part deals with finite difference time domain(FDTD) scheme which computes the scattered waves when the modulated Gaussian pulse is incident. Founded on it, radar cross section(RCS) is observed. Consequently, RCS is decreased by 1~2 dB with DBD plasma. The result is analogous to the RCS measurement in other researches.

Mixed-Flow Pump Impeller-Diffuser Optimization Method by Using CFX and HEEDS (CFX 와 HEEDS 를 이용한 사류펌프 임펠러-디퓨저 최적화방법)

  • Lee, Yong Kab;Park, In Hyung;Shin, Jae Hyok;Kim, Sung;Lee, Kyoung Yong;Choi, Young Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.10
    • /
    • pp.831-842
    • /
    • 2015
  • An optimization process was developed to improve mixed-flow pump performance. The optimization process was combined with CFX (a computational fluid dynamics (CFD) code) and HEEDS (an optimization code). CFX is a widely used CFD software for turbo machinery, whereas HEEDS, which uses the SHERPA algorithm, is a newly introduced optimization code. HEEDS can use a large number of optimization variables; thus, it is possible to effectively consider interaction effects. In this paper, an impeller model, which is already optimized with design of experiments (DOE), is used as the base model. The optimization process developed in this paper shows an improved design within an acceptable timeframe.

Transonic Wing Flutter Analysis Using a Parallel Euler Solver (병렬화된 오일러 코드를 이용한 3차원 날개의 천음속 플러터 해석)

  • Kwon, Hyuk-Jun;Park, Soo-Hyung;Kim, Kyung-Seok;Kim, Jong-Yun;Lee, In;Kwon, Jang-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.10
    • /
    • pp.10-16
    • /
    • 2005
  • In this paper, a three-dimensional Euler aeroelastic analysis program is developed with a second-order staggered algorithm to reduce the lagging errors between the fluid and structural solvers. In the unsteady aerodynamic analysis, a dual-time stepping method based on the diagonalized-ADI algorithm is adopted to improve the time accuracy and a parallelized multi-grid method is used to save the computing time. The aeroelastic analyses of AGARD 445.6 wing model have been performed to verify the Euler aeroelastic analysis code. The analysis results are compared with the experimental data and other computational results. The results show comparatively good correlation when they are compared with other references.

Transonic/Supersonic Nonlinear Aeroelastic Analysis of a Complete Aircraft Using High Speed Parallel Processing Technique (고속 병렬처리 기법을 이용한 전기체 항공기 형상의 천음속/초음속 비선형 공탄성 해석)

  • Kim, Dong-Hyun;Kwon, Hyuk-Jun;Lee, In;Kwon, Oh-Joon;Paek, Seung-Kil;Hyun, Yong-Hee
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.8
    • /
    • pp.46-55
    • /
    • 2002
  • A nonlinear aeroelastic analysis system in transonic and supersonic flows has been developed using high speed parallel processing technique on the network based PC-clustered machines. This paper includes the coupling of advanced numerical techniques such as computational structural dynamics (CSD), finite element method (FEM) and computational fluid dynamics (CFD). The unsteady Euler solver on dynamic unstructured meshes is employed and coupled with computational aeroelastic solvers. Thus it can give very accurate engineering data in the structural and aeroelastic design of flight vehicles. To show the great potential of useful application, transonic and supersonic flutter analyses have been conducted for a complete aircraft model under developing in Korea.

Nonlinear Characteristics of Flow Separation Induced Vibration at Low-Speed Using Coupled CSD and CFD technique (전산구조진동/전산유체 기법을 연계한 저속 유동박리 유발 비선형 진동특성 연구)

  • Kim, Dong-Hyun;Chang, Tae-Jin;Kwon, Hyuk-Jun;Lee, In
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.140-146
    • /
    • 2002
  • The fluid induced vibration (FIV) phenomena of a 2-D.O.F airfoil system have been investigated in low Reynolds number incompressible flow region. Unsteady flows with viscosity are computed using two-dimensional incompressible Navier-stokes code. To validate developed Navier-Stokes code, steady and unsteady flow fields around airfoil are analyzed. The present fluid/structure interaction analysis is based on the most accurate computational approach with computational fluid dynamics (CSD) and computational structural dynamics (CSD) techniques. The highly nonlinear fluid/structure interaction phenomena due to severe flow separations have been analyzed fur the low Reynolds region (R$_{N}$ =500~5000) that has a dominancy of flow viscosity. The effect of R$_{N}$ on the fluid/structure coupled vibration instability of 2-DOF airfoil system is presented and the effect of initial angle of attack on the dynamic instability are also shown.own.

  • PDF