• Title/Summary/Keyword: 유체 탱크

Search Result 190, Processing Time 0.023 seconds

FE Analysis on the Strength Safety of a Full Containment LNG Storage Tank System with Damping Safety Structures (댐핑안전 구조물을 고려한 완전밀페식 LNG 저장탱크 시스템의 강도안전성에 관한 유한요소해석)

  • Kim, Chung-Kyun;Kim, Tae-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.4
    • /
    • pp.85-90
    • /
    • 2007
  • This paper presents the finite element analysis on the strength safety of a full containment LNG storage tank system with damping safety structures. For the FEM analysis of the inner tank, the combined loads in which are related to a hydrostatic pressure, a cryogenic temperature load, BOG pressure, LNG weight, and a sinking force at the comer of the inner tank have been applied to the inner tank structure. The FEM computed results show that the conventional inner tank is safe for the given combined loads, but the damping safety structure such as compressive springs may be more useful structures to increase the safety of the tank system. The increased stiffness and the appropriate position of the springs are very important design parameters for increasing the damping strength safety of the tank system.

  • PDF

Numerical Study of Fluidic Device in APR1400 Using Free-Surface Model (자유수면모델을 활용한 APR1400 유량조절장치의 수치해석 연구)

  • Lim, Sang-Gyu;You, Sung-Chang;Kim, Han-Gon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.7
    • /
    • pp.767-774
    • /
    • 2012
  • A fluidic device (FD) has been adopted in the safety injection tanks (SITs) of APR1400. A flow control mechanism of the FD was used to vary the flow regime in the vortex chamber corresponding to the SITs water level. The flow regime in the vortex chamber has a different pressure loss from low to high in accordance with the SITs water level. Nitrogen at the top of the SIT could be released owing to inertia of discharge flow when changing from a high flow rate to a low flow rate. This phenomenon is important to design improvement perspective because it can affect the performance of the FD. This paper shows a result of a preliminary numerical study to obtain the transient data related to air release in the flow turn-down period using a two-fluid free-surface model provided from ANSYS CFX 13.0. In conclusion, there is no significant effect on the performance of the FD, though a small quantity of air is released during the flow turn-down period.

FE Analysis on the Strength Safety of a Full Containment LNG Storage Tank with Tension Steel Cables (인장강선을 사용한 완전방호식 LNG 저장탱크의 강도안전성에 관한 유한요소해석)

  • Kim, Chung-Kyun;Kim, Tae-Hwan;Kim, Do-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.2
    • /
    • pp.18-24
    • /
    • 2008
  • This paper presents the stress and deformation behaviors of 9% nickel steel inner tank in a full containment LNG storage tank using a FE analysis. For an increased strength safety of an inner tank, the tension cable was fastened around the outside wall of an inner tank, which is known as a weak zone for the hydrostatic pressures, cryogenic temperature loads, and other loadings. Based on the FEM computed results between a conventional inner tank and a inner tank with tension cables around the lower part of the side wall of an inner tank, the redesigned inner tank is more safe than that of the conventional tank without a tension cable. The FEM results recommend $3{\sim}4$ steel tension cables with a diameter of 50mm for an increased strength safety of the inner tank, which may decrease the stress concentration and deformation near the lower part of the side wall. Thus the tension cable around the inner tank may be used as an alternative safety device compared to the stiffener and the top girder structures for the increased LNG storage tank, especially.

  • PDF

Design Safety Analysis of $9\%$ Nickel Steel Structure in Inner Tank Storage System (내부탱크 저장 시스템에서 $9\%$ 니켈강재 구조물의 설계 안전성에 관한 연구)

  • Kim Chung Kyun;Choi Dong Yul
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.4 s.16
    • /
    • pp.49-55
    • /
    • 2001
  • This paper presents the design safety analysis of the inner tank structure, which is manufactured by 9 percent nickel steel sheets in the full containment type LNG storage tank. The FEM computed results indicate that top girder and several stiffener rings of the inner tank play an important role for controlling the deformation and stress intensity of the inner tank structure. The hydrostatic pressure due to cryogenic fluids gave more influential to the deformation of the inner tank wall compared with that of a cryogenic temperature of $-162^{\circ}C$. But, the deformation and stress of the inner tank. which is produced by the buckling loads, are very small because the external load is not applied to the top of the inner tank. This indicates the role of top girder and stiffener rings of the inner tank model is not important in full containment LNG storage tank.

  • PDF

Numerical Analysis on Nonlinear Sloshing Problem using Finite Element Method (유한 요소법을 이용한 비선형 슬러싱 문제 해석)

  • Kyoung Jo-Hyun;Kim Jang-Whan;Cho Seok-Kyu;Bai Kwang-June
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.4
    • /
    • pp.216-223
    • /
    • 2004
  • A nonlinear sloshing problem is numerically simulated. During excessive sloshing the sloshinginduced impact load can cause a critical damage on the tank structure. A three-dimensional free-surface flow in a tank is formulated in the scope of potential flow theory. The exact nonlinear free-surface condition is satisfied numerically. A finite-element method based on Hamiltons principle is employed as a numerical scheme. The problem is treated as an initial-value problem. The computations are made through an iterative method at each time step. The hydrodynamic loading on the pillar in the tank is computed.

  • PDF

A Study on the Proper Installation of Storage Tank Measuring Instruments through a Case Study of Corrosive Fluid Leak Accident (부식성 유체 누출 사고사례 연구를 통한 저장탱크 레벨게이지 적정설치에 관한 연구 )

  • Sang Ryung Kim;Gyu Sun Cho;Won Baek Yang
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.2
    • /
    • pp.32-38
    • /
    • 2023
  • In a chemical plant, while supplying corrosive fluid to a storage tank with a pump, an accident occurred where the corrosive fluid leaked through the upper exhaust vent because the level indicator was not accurately determined. There are various causes of leakage accidents, but we focused on the sticking of the level indicator of the level gauge, which is the direct cause. As a result of the analysis, the level indicator used in the workplace where the accident occurred was randomly replaced, and in the summer when the accident occurred, the tubular type level gauge was found to be more likely to stick than other types because thermal expansion easily occurs. In addition, there were difficulties in reviewing the proper installation because the installation standards for measuring instruments installed in storage tanks were not clear in Korea. Therefore, in this study, based on accident cases and overseas standards, we are going to find out about precautions when installing storage tank instrumentation.

A Study of Sloshing Tank on Vessel Motions with Various Baffle Clearance (탱크 내 격벽에 의한 간극 변화가 선박 운동에 미치는 영향 연구)

  • Kim, Kyung Sung;Yu, Sunjin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.6
    • /
    • pp.796-802
    • /
    • 2018
  • The effects of inner liquid sloshing on vessel motions are a well-known factor. It was investigated experimentally and numerically. In this regard, the study of many efforts to reduce natural phenomena of vessel motions by adopting special devices especially for roll motions. Among many devices, inserting baffles in the inner liquid tank is very common. In this study, one investigated the vessel motions with inner sloshing tanks with baffles inside. For the numerical simulation, one employed a dynamically coupled program between boundary-element-method-based vessel motion analysis program and a particle-based computational fluid dynamics program. Comparing corresponding experimental results validated the dynamically coupled program. The validated coupled program was used to simulate vessel motions, including sloshing effects with various lengths of inner baffles. The simulation results show that not only the filling ratio of inner liquid, but also the length of clearance due to baffles influenced the vessel motions. The significant point of this study was that the natural frequency of vessel motions can be maintained irrespective of the amount of filling ratio through adjustment of the clearance. In a future study, the effects of various numbers of baffles with various clearances would be conducted to percuss the possibility of vessel motion control with inner liquid sloshing effects.

The Concept Design of Joint Part Between Propellant Tank and Feeding Line for Launch Vehicle (발사체 추진제 탱크와 배관 연결부 개념설계)

  • Jung, Dong-Ho;Cho, Kie-Joo;Oh, Seung-Hyub
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.801-804
    • /
    • 2011
  • The concept design of joint part between propellant tank and feeding line for launch vehicle has been performed with the case study of oversea launch vehicles. we carried out, for the several configurations, numerical flow analyses to find the joint configuration which promises high flow uniformity at the outlet. There were a little difference in the numerical results, because the length of feeding lines are sufficiently long to stabilize the flow field.

  • PDF

Heat Transfer Characteristics on the High Speed Bullet Penetrated a Fuel Tank (고속충격탄의 연료탱크 관통시 열전달 특성)

  • Lee, Seung-Chul;Park, Young-Rok;Jeon, Woo-Chul;Lee, Hae-Pyeong
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2011.11a
    • /
    • pp.533-536
    • /
    • 2011
  • 본 연구에서는 차량 연료탱크에 충격탄 관통 시 화재발생 여부를 분석하기 위한 연구의 전단계로서, 충격탄 속도 변화에 따른 연료탱크 내부의 열전달특성을 분석하기 위해 전산유체역학기법을 도입하여 수치해석을 수행한 결과 다음과 같은 결론을 얻었다. 잔류속도 120m/s의 경우, 관통부를 지난 위치에서 최대온도는 약 324.8K를 나타내고 잔류속도 360m/s의 경우, 충격탄이 관통부로 유입되면서 급격하게 증가되어 최고온도 약 382.1K를 나타낸다. 이러한 결과로 미루어 최고 온도가 가솔린 연료의 착화온도보다 높아 화재의 위험성이 있지만 순간적인 온도변화가 심하고 착화시간이 만족되지 않을 것으로 판단된다.

  • PDF