• Title/Summary/Keyword: 유체 반력

Search Result 6, Processing Time 0.021 seconds

The Theoretical Investigation of the Natural Frequency Coefficients for a Thin Rectangular Tube used in the Heat Exchanger (열교환기에 사용되는 얇은 사각 단면 튜브의 고유규진동계수에 대한 이론적 분석)

  • 김기만
    • Journal of KSNVE
    • /
    • v.5 no.3
    • /
    • pp.373-383
    • /
    • 1995
  • From the viewpoint of the structural design, the principal problem of the heat exchanger is the potentiality of structural instabilities due to the fluid loading effect during operations. Excessive fluid loading may give rise to permanent deformation of tube and would enentually result in collapse of heat exchanger, which would cause an obstruction of the fluid flow in the narrow channels. In this study, a fluid-structural interaction model was developed to investigate analtically the vibration characteristics of thin rectangular tube used in the heat exchanger. The model consists of two flat plates separated by fluid. The effects of the fluid in the tube was stuided. For analyses, the natural frequency coefficients of the model were investigated for the plate aspect ratios, channel heights, and boundary conditions. As conclusions, the natural frequency coefficients of the tube is found to be affected largely by the fluid loading and the channel heights.

  • PDF

Dynamic Modeling and Repulsive Force Control of Medical Hpatic Master (의료용 햅틱 마스터의 동적 모델링과 힘 반향 제어)

  • Oh, Jong-Seok;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.3
    • /
    • pp.284-290
    • /
    • 2012
  • In this research, a new type of haptic master device using electrorheological(ER) fluid for minimally invasive surgery(MIS) is devised and control performance of the proposed haptic master is evaluated. The proposed haptic master consists of ER bi-directional clutch/brake for 2 DOF rotational motion(X, Y) using gimbal structure and ER brake on the gripper for 1 DOF rotational motion (Z). Using Bingham characteristic of ER fluid and geometrical constraints, principal design variables of the haptic master are determined. Then, the generation of torque of the proposed master is experimentally evaluated as a function of applied field of voltage. A sliding mode controller which is robust to uncertainties is then designed and empirically realized. It has been demonstrated via experiment that the proposed haptic master associated with the controller can be effectively applied to MIS in real field conditions.

A Three-Dimensional Dynamic Analysis of Towed Systems Part 1. A Mathematical Formulation (수중예인시스템의 3차원 동역학 해석 1부: 수학모델 정식화)

  • Hong, Sub;Hong, Seuk-Won
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.16-22
    • /
    • 1994
  • 수중 예인시스템의 동적 거동 해석을 위한 3차원 비선형 수학모델이 제시되었다. 수중 예인체는 세장보로 이상화되었으며, 보요소의 굽임강성 및 비틈강성의 영향이 수학모델에 포함되었다. 축류가 지배적인 비정상 상대유동장내의 세장예인체의 횡방향 운동에 따른 유체동역학적 반력과 기진력에 관한 비선형 3차원 수학 정식화가 수행되었다.

  • PDF

A Proof of Concept Investigation on a Pendular Power Take-Off System of Horizontal Wave Power Generator (수평파력 발전장치의 진자형 1차 에너지 추출 시스템에 대한 기초 모형실험 및 시뮬레이션)

  • Park, Yong-Kun;Lim, Chae Gyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.68-75
    • /
    • 2017
  • This paper presents the experimental and theoretical results of the dynamic responses of a pendular energy extractor in a two-dimensional wave channel. By adopting a wave maker with varying wave height and period, the dynamic responses of the pendular buoy were experimentally obtained. Furthermore, with the aid of the co-simulation of moving particle analysis and rigid dynamic analysis, the dynamic responses of the pendular system were evaluated. In order to validate the feasibility of the proposed wave power generator, the force tuning of the pendular system with restoring energy was carried out. The results provide proof of concept data for the development and design of a commercial model for horizontal wave power generators in the shoreline area.

Blowdown Prediction of Safety Relief Valve and FSI Analysis (안전릴리프밸브의 블로우 다운 예측 및 유체-구조 연성해석)

  • Choi, Ji-Won;Jang, Si-Hwan;Lee, Kwon-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.729-734
    • /
    • 2017
  • A safety relief valve is a device that relieves excessive pressure in piping lines or tanks and maintains pressure at the appropriate pressure level for use. The (pressure in the) safety valve is directly influenced by the change in the back pressure, depending on whether the vents in the spring bonnet are vented to the atmosphere or to the outlet. The back pressure is divided into the built-up back pressure and the superimposed back pressure, and the back pressure characteristics vary according to the usage conditions. The safety valve used in this study is a Conventional Safety Relief Valve. The blowdown of the safety valve is predicted by establishing the equilibrium equation between the opening force and spring force considering the back pressure characteristics. Its reliability is secured by using CFX17.1. In addition, the safety of the safety valve trim was examined through fluid-structure interaction analysis.

Performance Prediction of Wind Power Turbine by CFD Analysis (유동해석을 통한 수직축 풍력발전 터빈의 성능 예측)

  • Kim, Jong-Ho;Kim, Jong-Bong;Oh, Young-Lok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.4
    • /
    • pp.423-429
    • /
    • 2013
  • The performance of a vertical-type wind power generator system was predicted by CFD analysis. In the analysis, the reaction torque was calculated for a given rotational speed of the blades. The blade torque of a wind power system was obtained for various rotational speeds, and the generation power was calculated using the obtained torque and the rotational speed. The optimum generator specification, therefore, could be decided using the relationship between the generated power and the rotational speeds. The effects of the number of blades and blade shapes on the generation power were also investigated. Finally, the analysis results were compared with the experimental results.