• Title/Summary/Keyword: 유체탄성진동

Search Result 79, Processing Time 0.03 seconds

Flow-induced Vibration Time Response Analysis of Loosely Supported Multi-Span Tube using Commercial FEA Code (지지점 간극을 갖는 다점지지 유연관의 유동하중에 의한 시간응답 이력해석과 상용유한요소 해석코드의 적용)

  • Lee, Kang Hee;Kang, Heung Seok;Shin, Chang Hwan
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.11 no.2
    • /
    • pp.68-74
    • /
    • 2015
  • Time domain response analysis for vibro-impact nonlinear behavior of multi-span tube with loose supports was performed using commercial FEA code and user subroutine. Support geometry of multi-span tube with a finite gap is realistically modeled by analytical rigid surface. Model of hydrodynamic force is based on the Qusai-steady model which accounts for the inclined angle of relative flow velocity and time delay between flow force and resulting tube motion. During tube vibration from flow loading, impact and friction at the support location is simulated using commercial FEA code with master slave contact algorithm. Analysis results has reasonable agreement with those of references and test experience. Plan of further refinement of analysis model and future test verification is briefly introduced.

Sailing Characteristics of a Model Ship of Weis-Fogh Type (Weis-Fogh형 모형선의 주행특성)

  • Ro, Ki-Deok;Seok, Jae-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.1
    • /
    • pp.45-52
    • /
    • 2010
  • A model of the propulsion mechanism, I, II, III was based on a two-dimensional model of the Weis-Fogh mechanism and consisted of one or two wings in a square channel. The sailing and vibration performance characteristics of model ships were tested to compare with each other. we took results as follow. Thrust of propulsion model, I and III was increased by 31% and 43%, the speed of model ship by 20% and 23%, When compared to model II in same condition. The thrust improvement using the elastic spring wing was effective not only on all models but also in the real ship. The maximum amplitude and RMS were largest at the opening angle ${\alpha}=15^{\circ}$ and smallest at ${\alpha}=30^{\circ}$ on the vibration of model ship. The thrust of propulsion model III with opening angle ${\alpha}=30^{\circ}$, phase ${\Delta}T=0^{\circ}$ was large, but the amplitude of vibration was small relatively.

Study of the Wake Flow Around a Circular Cylinder (단독 원기둥 주위의 후류유동에 관한 연구)

  • Lee, Jaesung;Kim, Sangil;Seung, Samsun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.11
    • /
    • pp.891-896
    • /
    • 2015
  • This experimental study investigated the wake flow around an elastically supported circular cylinder. In this study, the Reynolds numbers are varied in the region of $1.4{\times}10^4{\leq}Re{\leq}3.2{\times}10^4$. Under these conditions, we have captured the process of the wake mechanism and the moving path of the vortex by measuring the velocity at each position in the wake around the cylinder. Further, these facts from the wind tunnel test are proved by a flow visualization test through a water channel. From the result, we have arrived at the following conclusions : i) The process (formation${\rightarrow}$growth${\rightarrow}$collapse) of vortex is observed in the wake around the cylinder, ii) The vortex efflux angle is approximately $16^{\circ}{\sim}17^{\circ}$ under the experimental conditions. These angles have no relationship with the velocity change and the existence of flow-induced vibrations of the cylinder, and iii) The moving path of the vortex center is obtained by spectrum analysis of the fluctuating velocity behind the cylinder. These are confirmed by conducting visualization tests.

Nonlinear Transonic Flutter Analysis of a Composite Fin Considering Delamination Effect (층간분리 효과를 고려한 복합재 핀의 비선형 천음속 플러터 해석)

  • Gwang Young Lee;Ki-Ha Kim;Dong-Hyun Kim
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.6
    • /
    • pp.82-93
    • /
    • 2023
  • In this paper, nonlinear transonic flutter analyses of a composite missile fin considering the effect of delamination are conducted. An effective modal analysis methodology is adopted and verified with the experimental modal test data for laminated composite plates with delamination. Extended version of the in-house computational aeroelastic analysis program with the transonic small-disturbance (TSD) code is used in order to predict the flutter dynamic pressure of the delaminated composite fin models. In the subsonic, transonic, and supersonic flow regions, nonlinear time-domain flutter analyses are performed for various delamination conditions, and aeroelastic characteristics due to the delamination phenomena are examined in detail.

Vibrational Properties of High Damping Polymer Concrete with Hybrid Damper (복합구조 댐퍼를 적용한 고 감쇠 폴리머 콘크리트의 진동 특성에 관한 연구)

  • Kim, Jeong-Jin;Choi, Kyung-Suk;We, Joon-Woo;Seok, Won-Kyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.135-142
    • /
    • 2020
  • In the case of a concrete structure, vibration problems occur under various conditions because of its low damping performance. To solve this problem, a study on the high damping performance of the polymer concrete with hybrid damper has recently been increased. Since water is not used in polymer concrete, the curing time is short. Also, the physical properties and dynamic properties of polymer concrete are quite excellent. So polymer concrete is widely expected to be used for structural materials. The hybrid damper is the structural system that consists of steel balls and viscous fluid inside the pipe which is embedded in polymer concrete. It can reduce the structural vibrations through the energy dissipation mechanism of viscous fluid and steel balls. In this study, the physical and dynamic properties of polymer concrete with hybrid damper were compared with ordinary concrete. As a result, the elasticity coefficient and the strength of the polymer concrete with hybrid damper were so much excellent. In particular, the tensile strength was 6.5 to 10 times higher than ordinary concrete. The frequency response function and damping ratio were also compared. As a result, the dynamic Stiffness of the polymer concrete was 25% greater than that of ordinary concrete. The damping ratio of the polymer concrete was approximately 3 times higher than that of ordinary concrete. Although the dynamic stiffness of the hybrid damper showed similar tendency, the damping ratio was 3.5 times higher than that of ordinary concrete. Therefore, the polymer concrete with hybrid damper was superior to ordinary concrete.

Improving Wave Propagation Performance of an Ultrasonic Waveguide for Heat Isolation (열 차단용 초음파 도파관의 전파성능 향상 연구)

  • 최인석;전한용;김인수;김진오
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.7
    • /
    • pp.545-553
    • /
    • 2003
  • This paper is concerned with protecting piezoelectric transducers used in an ultrasonic flowmeter from the high temperature of hot fluid in a pipe by using a waveguide and with improving the propagation of ultrasonic longitudinal vibration in the waveguide. Waveguide material has been chosen for efficient insulation of heat transferred in the waveguide, and the minimum length of the waveguide for protecting piezoelectric transducer has been estimated. Forced response of the longitudinal vibration in a uniform circular rod has been obtained and the length of the waveguide has been selected for maximum amplitude. Longitudinal vibration response of a conically-tapered rod excited at a natural frequency has been obtained to confirm that wave motion is amplified as the cross-sectional size of the waveguide decreases along the axial direction. The fact that dispersion of a pulse wave in a waveguide is reduced as the cross-sectional radius is decreased has been examined theoretically and confirmed experimentally by using a single-rod waveguide. A bundle-type waveguide has proven to be a practical one through the evaluation of the wave propagation performance.

Development of Real-Time Flutter Analysis Program (실시간 플러터 해석 프로그램 개발)

  • Lee, Ju-Yeon;Bae, Jae-Sung;Hwang, Jai-Hyuk;Roh, Jin-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.2
    • /
    • pp.99-105
    • /
    • 2017
  • Wind tunnel test which is one of the method to predict the aeroelastic characteristics has difficulties to make scale-down structural model and achieve a specified free stream velocity. It is very costly and complicated to consider similarity relationships between real structure and scale-down structural model. "Dry Wind-Tunnel(DWT)" was proposed to overcome these difficulties. This is made up of Ground Vibration Test hardware and software to compute the aerodynamic forces. In the present study, program for computing the real-time unsteady aerodynamic forces which is an important part of DWT system was developed by Matlab Simulink and dSPACE. In addition, using this program and software which is a part of the test structure, a real-time flutter analysis was conducted and the results are verified by ZAERO.

Rheological Properties of ${\beta}-Glucan$ Isolated from Non-waxy and Waxy Barley (메성 및 찰성보리 ${\beta}-Glucan$의 리올로지 특성)

  • Choi, Hee-Don;Park, Yong-Gon;Jang, Eun-Hee;Seog, Ho-Moon;Lee, Cherl-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.590-597
    • /
    • 2000
  • The rheological properties of ${\beta}-glucans$ isolated from non-waxy and waxy barley were investigated. ${\beta}-Glucan$ solutions showed pseudoplastic properties and their behaviors were explained by applying Power law model in the range of concentrations$(1{\sim}4%)$ and temperatures$(20{\sim}65^{\circ}C)$. The effects of temperature and concentration on the apparent viscosity at $700\;s^{-1}$ shear rate were examined by applying Arrhenius equation and power law equation, and their effect was more pronounced in waxy ${\beta}-glucan$ solutions. The activation energy for flow of ${\beta}-glucan$ solutions decreased with the increase of concentration, and the concentration-dependent constant A increased with the increase of temperature. The intrinsic viscosity of waxy ${\beta}-glucan$ was higher than that of non-waxy ${\beta}-glucan$. The transition from dilute to concentrate region occurred at a critical coil overlap parameter $C^*[{\eta}]=0.02.$ The slopes of non-waxy and waxy ${\beta}-glucan$ at $C[{\eta}] were similar, but the slope of waxy ${\beta}-glucan$ at $C[{\eta}]>C^*[{\eta}]$ was higher than that of non-waxy ${\beta}-glucan$. Dynamic viscoelasticity measurement showed that cross-over happened, and storage modulus was higher than loss modulus at frequency range above cross-over. ${\beta}-Glucan$ solutions formed weak gels after stored for 24 hr.

  • PDF

Structural Analysis of a Suction Pad for a Removable Bike Carrier using Computational and Experimental Methods (탈착식 자전거 캐리어용 흡착 패드의 실험 및 전산적 방법을 활용한 구조해석)

  • Suh, Yeong Sung;Lim, Geun Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.622-628
    • /
    • 2016
  • As the suction pad-supporting bike carrier attached to a car may be subject to an excessive dynamic load due to random vibrations and centrifugal forces during driving, its structural safety is of great concern. To examine this, the finite-element method with a fluid-structure interaction should be used because the pressure on the pad bottom is changed in real time according to the fluctuations of the force or the moment applied on the pad. This method, however, has high computing costs in terms of modeling efforts and software expense. Moreover, the accuracy of computation is not easily guaranteed. Therefore, a new method combining the experiment and computation is proposed in this paper: the bottom pressure and contact area of the pad under varying loads was measured in real time and the acquired data are then used in the nonlinear elastic finite-element calculations. The computational and experimental results obtained with the product under development showed that the safety margin of the pad under the axial loading is relatively sufficient, whereas with an excessive rotational loading, the pad is vulnerable to separation or a local surface damage; hence, the safety margin may not be secured. The predicted contact behavior under the variation of the magnitude and type of the loading were in good agreement with the one from the experiment. The proposed analysis method in this study could be used in the design of similar vacuum pad systems.