• Title/Summary/Keyword: 유체기구

Search Result 102, Processing Time 0.029 seconds

Investigation of Molten Fuel Relocation Dynamics with Applications to LMFBR Post-Accident Fuel Relocation

  • Chun, Moon-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.88-98
    • /
    • 1980
  • The process of solidification of a single-phase flowing hot fluid in a cylindrical tube has been investigated analytically and experimentally. A series of tests were performed, using paraffin -wax and Wood's metal as flowing hot fluids. These data verified the existing quasistatic numerical analysis model of freezing process developed at Brookhaven National Laboratory In addition, experimental results provided information regarding the effects of various parameters on the .process of transient flowing and freezing through a vertical channel. The experimental apparatus and techniques are described. Comparison of experimental data with predictions of mathematical models for transient molten fluid displacement are presented in graphical form. In addition, the mathematical model is applied to LMFBR post-accident conditions.

  • PDF

Study on the Cooling Performance of Heatsink for Induction Cooktop using Computational Fluid Dynamics (인덕션 쿡탑 기구물 형상변경이 Heatsink 및 Coil 냉각성능에 미치는 영향에 대한 연구)

  • Park, Dong Ho;Kwon, Myoung Keun;Lee, Dong Beom;Seo, Eung Ryeol;Park, Yong Jong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.3
    • /
    • pp.33-37
    • /
    • 2015
  • A numerical study on the IPM/Bridge Diode cooling and coil cooling has been performed. Results are presented as plots of thermal resistance, temperature drop and RPM-ratio. CFD analysis for conventional cooling system has been performed as a reference case. As the RPM-Ratio was increased, heatsink thermal resistance and coil temperature were decreased. IPM/Bridge Diode thermal resistance and temperature of the coil is tended to be trade-off. The temperature of coil closest to the AC-motor fan showed the most significant change in accordance with duct design. The temperature of coil located at the top of DC-motor fan showed the most significant variation as the cooling air passes the heatsink fin area.

Application of Lumley's Drag Reduction Model to Two-Phase Gas-Particle Flow in a Pipe(I) - Mechanism of Momentum Transfer- (고체분말이 부상하는 2상 난류 수직관 유동에 대한 Lumley의 저항감소 모델의 적용(I) - 운동량 전달 기구)

  • 한기수;정명균;성형진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.6
    • /
    • pp.1301-1309
    • /
    • 1989
  • 본 연구의 목적은 Lumley의 저항감소 모델을 사용하여 여러 부하도하에서 부유유동의 유동 특성을 관찰하는 것으로, 특히 저항감소가 일어날 때와 일어나지 않을 때의 유동특성을 알아 보고자 한다.

Ship's Propulsion Using the Principle of Hovering Flight of a Small Insect (작은 곤충의 정지비행 원리를 이용한 배의 추진)

  • Ro, Ki-Deok
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.383-387
    • /
    • 2001
  • A mechanism of hovering flight of small insects which is called the Weis-Fogh mechanism is applied to ship propulsion. A model of the propulsion mechanism is based on a two-dimensional model of the Weis-Fogh mechanism and consists of one or two wings in a square channel. A model ship equipped with this propulsion mechanism was made, and working tests were performed in a sea. The model ship sailed very smoothly and the moving speed of the wing was small compared with the advancing speed of the ship.

  • PDF

An Experimental study on the Characteristics of the Emulsion Lubrication (이멀션윤활특성에 관한 실험적 연구)

  • 이종순;이봉구;정재련;지창헌
    • Tribology and Lubricants
    • /
    • v.2 no.2
    • /
    • pp.12-19
    • /
    • 1986
  • Using emulsion lubricant whose cooling effect and incombustibility are good and which is economical, I investigated lubricative mechanism and the behavior of scattered particles in the elastic fluid lubrication region with the line contact between rollers and plates and the light interference system. The results of the study are as follows: (1) The flow in the squeeze oil film is considered as comparatively wide clearance and narrow one, and in the former case the effect of the distribution of particles and the velocity on the flow. In the latter case, emulsion particles stay in the clearance an the oil film changes with the decrease of the oil film thickness. (2) In the wide clearance the velocity difference of the flow O/W or W/O emulsion is inverse proportional to the particle size. In the narrow clearance the distribution of the remained drops is different from one another and the scattered particles change more easily in O/W type than in W/O type. (3) At the beginning of the EHL the stagnation region with slow flowing velocity exists and the behavior at the region is different depending on the particle size. (4) By observing the dischromatic light interference line, emulsion oil passing through EHL region and the crack behavior at the beginning of EHL were found.

Numerical study on fluid characteristics due to disc shape in a novel mechanical ballast water treatment system (신개념 기계식 선박평형수 처리장치의 디스크 형상에 따른 유동특성에 관한 수치해석 연구)

  • Sohn, Sang-Ho;Kim, Young-Chul;Choi, Kung-Kwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.19-27
    • /
    • 2015
  • As the recent regulation of Internaional Maritime Organization (IMO) is enforced, the advanced technology of Ballast water treatment system (BWTS) is needed to meet its requirements. Until now, there are two kinds of the BWTS technologies such as physical methods (Membrane and UV) and chemical methods (Chlorin and Ozone). However, these conventional methods have some limitations of auxiliary power, low productivity, residual treatment and etc. In order to overcome these problems, this paper introduces the new kind of BWTS based on mechanical principle and investigates the effect of rotating disc shapes on flow characteristics between rotating and stationary discs by computational fluid dynamics (CFD). Planar and Step types can make the local cavitation generated along radius, and Circular type can increase the intensity of shear stress.

Modeling and Theoretical Analysis of Thermodynamic Characteristic of Nano Vibration Absorber (나노 진동 흡수기의 모델링 및 열역학적 특성 해석에 대한 이론적 연구)

  • 문병영;정성원
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.93-99
    • /
    • 2003
  • In this study, new shock absorbing system is proposed by using nano-technology based on the theoretical analysis. The new shock absorbing system is complementary to the hydraulic damper, having a cylinder-piston-orifice construction. Particularly for new shock absorbing system, the hydraulic oil is replaced by a colloidal suspension, which is composed of a porous matrix and a lyophobic fluid. The matrix of the suspension is consisted of porous micro-grains with a special architecture: they present nano-pores serially connected to micro-cavities. Until now, only experimentally qualitative studies of new shock absorbing system have been performed, but the mechanism of energy dissipation has not been clarified. This paper presents a modeling and theoretical analysis of the new shock absorbing system thermodynamics, nono-flows and energy dissipation. Compared with hydraulic system, the new shock absorbing system behaves more efficiently, which absorb a large amount of mechanical energy, without heating. The theoretical computations agree reasonably well with the experimental results. As a result. the proposed new shock absorbing system was proved to be an effective one, which can replace with the conventional one.

Characteristic of an insect-mimicking flapping device actuated by a piezoceramic actuator (압축하중을 받는 압전 작동기로 구동하는 곤충모방 날갯짓 기구의 특성)

  • Park, Hoon-Cheol;Quoc, Viet Nguyen;Byun, Do-Young;Goo, Nam-Seo;Yoon, Kwang-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.11
    • /
    • pp.1063-1071
    • /
    • 2008
  • A piezoceramic unimoph actuator can produce a relatively larger actuation force and actuation displacement when a proper compressive load is applied during operation, because the compressive stress causes material nonlinear behavior in the piezoceramic layer and triggers mechanical buckling. In this paper, we examined effects of the actuator under compression on the flapping angle and aerodynamic force generation capability. Effects of wing shape and passive wing rotation angle on the aerodynamic force production were also investigated. The average vertical force acquired by a 2D CFD simulation for an artificial wing showed a good agreement with the measured one by the experiment.

Simulation of Natural Gas and Pulverized Coal Combustion using 93-PCGC-2 (93-PCGC-2을 이용한 천연가스 연소와 미분탄 연소 모사)

  • 조석연;서경원;이진욱
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1995.11a
    • /
    • pp.50-55
    • /
    • 1995
  • 향상되어진 93-PCGC-2는 기존의 PCGC-2와 같이 미분탄 연소를 포함하는 다양한 반응성흐름과 비반응성 흐름을 설명하기 위해 2차원 정상상태 모델로 제시되어 졌다. 93-PCGC-2는 실린더형의 축 대칭계에 응용되어질 수 있고, 난류(Turbulence)는 유체역학식과 연소기구 양쪽을 위해 고려되어졌으며, 불연속 세로좌표 방법(Discrete Ordinates Method)을 이용하여 기체, 벽 및 입자들로부터의 복사열(Radiation)을 모사하였다. 입자상은 입자 무리들의 평균 경로들을 따라 해석하는 Lagrangian계의 해석법으로 모델화되어졌다. 석탄의 팽윤(Swelling)과 촤의 반응성에 관한 부모델과 더불어 새롭게 일반화된 석탄 탈휘발화 부모델 (FG-DVC)도 첨가되어졌다. 비균일 반응기구는 확산과 화학반응 둘 모두를 고려하였다. 주요 기상반응은 국부 순간 평형을 가정하여 모델화하였다. 그래서 반응속도는 혼합의 난류속도에 의해 제한되어진다. Thermal NOx과 Fuel NOx의 유한속도 화학론(Finite Rate Chemstry)에 대한 부모델은 화학반응속도론와 난류성의 통계치를 통합하여 만들어져 있다. 기상은 반복적인 line-by-line기교에 의해 풀려지는 elliptic partial differential equation으로 묘사되어진다. 수치적인 안정을 고려하기 위해 under-relaxation이 이용되어졌다. 이렇게 코드화된 93-PCGC-2는 연소를 위해 모사되어졌다. 또한 더 나아가 이 수치모델의 활용범위는 미분탄의 가스화에도 활용되어질 것으로 기대되어진다.

  • PDF

Numerical Study of High Resolution Schemes for GH2/GO2 Rocket Combustor using Single Shear Coaxial Injector (단일 전단 동축 분사기를 가지는 GH2/GO2 로켓 연소기의 고해상도 수치해석)

  • Jeong, Seung-Min;Um, Jae-Ryeong;Choi, Jeong-Yeol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.6
    • /
    • pp.72-83
    • /
    • 2018
  • In this study, a series of CFD analyses were carried out for a hydrogen rocket combustor with a single shear coaxial injector. A hybrid RANS/LES approach was used for the turbulent combustion analysis with a two-dimensional axisymmetric configuration. Three reaction mechanisms, three spatial discretization methods, and three levels of grid resolution were compared to determine an appropriate CFD approach. The performance of the CFD prediction were investigated by comparing the wall heat flux with experimental data. Investigation of the flow field results provides an insight into the characteristics of the turbulent reacting flow of a rocket combustor with a shear coaxial injector.