• Title/Summary/Keyword: 유체공학

Search Result 2,709, Processing Time 0.027 seconds

Influence of Design Variables on Flow Characteristics of Poppet Valve using Analysis of Means (평균분석을 이용한 설계변수가 포핏 밸브의 유동특성에 미치는 영향)

  • Jeong, Ja-Young;Choi, Eun-Ho;Kang, Young-Jin;Noh, Yoojeong;Lim, O-Kaung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.3
    • /
    • pp.239-248
    • /
    • 2017
  • According to the structure, solenoid valve can be categorized as spool valve or poppet valve. While various research on spool valve which has simple structure and fine susceptibility to contamination has been conducted, poppet valve which has less susceptibility to contamination and advantage in a long time operation still need much research because of its complicated structure. In order to design the poppet valve, various parameters such as the diameter of the poppet, the angle of the poppet, the diameter of the disk, the spring stiffness, the spring preload and flow path structure should be considered. Conventional studies on poppet valve usually take only one design parameters and did not much focused on the effect of the parameters on flow characteristics. In this paper, the change of the flow characteristics according to the design parameters of the poppet valve for 3/2Way solenoid valve is analyzed. The previous studies and the results of initial model analysis was referred for the selection of the design parameters. The effects of design parameters on maximum pressure, minimum pressure, and pressure drop was examined using analysis of means(ANOM).

An Experimental Study on the Mixing Flow Structure of Turbulent Cross Flow with Respect to the Ratio of Mass Flow Rate (난류충돌유동의 질량유량비에 따른 혼합유동구조에 관한 실험적 연구)

  • 이대옥;노병준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.11
    • /
    • pp.2150-2158
    • /
    • 1992
  • This study was carried out to investigate the flow structure and mixing process of a cross mixing flow formed by two round jets with respect to the ratio of mass flow rate. This flow configuration is of great practical relevance in a variety of combustion systems, and the flow behaviour of a cross jet defends critically on the ratio of mass flow rate and the cross angle. The mass flow rate ratios of two different jets were controlled as 1.0, 0.8, 0.6, and 0.4, and the crossing angle of two round jets was fixed at 45 degree. The velocities issuing from jet nozzle with an exit diameter of 20mm were adjusted to 40m/s, 32m/s, 24m/s, and 16m/s, and the measurements have been conducted in the streamwise range of $1.1X_0$to $2.5X_0$ by an on-line measurement system consisted of a constant temperature type two channel hot-wire anemometry connected to a computer analyzing system. The original air flow was generated by a subsonic wind tunnel with reliable stabilities and uniform flows in the test section. For the analysis of the cross mixing flow structure in the downstream region after the cross point, the mean velocity profiles, the resultant velocity contours, and the three-dimensional profiles depending upon the mass flow rate ratio have been concentrately studied.

Study on Effect of Anchor Bolt by Thermal Expansion of Sulfur Storage Tank under High Temperature (고온을 받는 유황저장탱크의 열팽창에 의한 앵커볼트 영향에 관한 연구)

  • Jung, Wook-Hwan;Kim, Jeong-Soo;Kim, Tae-Min;Kim, Moon-Kyum
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.5
    • /
    • pp.483-490
    • /
    • 2016
  • In plant industry, sulfur storage tank is made of steel and annular plate is connected with concrete foundation of ring wall type by anchor bolt. Due to keep sulfur at high temperature in tank by coil, sulfur storage tank is expanded larger than another tank stores fluid at room temperature. Generally, structural design of tank foundation is performed analysis with loading of temperature gradient between inner and outer surface, this method can't consider the phenomenon that load is intensively transferred to concrete foundation at anchor bolt. This means that temperature load is underestimated and causes crack of concrete near anchor bolt. In this study, evaluation formula considering temperature load transfer mechanism through anchor bolt is proposed and load acting on concrete foundation is rationally decided. For this purpose, it is analyzed variation of thermal load per various anchor bolt number using finite element model including tank annular plate and anchor bolt. Solution is proposed as specified term combining result of analysis and theoretical solution for evaluating load transferred by anchor bolt. For confirmation of validation of proposed formula, it is applied in design of sulfur storage tank at plant site, it shows that the formula can be practically applied.

A Study of Cold Flow Characteristics of a Flue Gas Recirculation Burner using Coanda Nozzles (코안다 노즐을 이용한 배기가스 재순환 버너의 냉간 유동 특성에 관한 연구)

  • Ha, Ji Soo;Park, Chan Hyuk;Shim, Sung Hun;Jung, Sang Hyun
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.152-158
    • /
    • 2016
  • Nitrogen oxide is generated by the chemical reaction of oxygen and nitrogen in higher temperature environment of combustion facilities. The NOx reduction equipment is generally used in the power plant or incineration plant and it causes enormous cost for the construction and maintenance. The flue gas recirculation method is commonly adopted for the reduction of NOx formation in the combustion facilities. In the present study, the computational fluid dynamic analysis was accomplished to elucidated the cold flow characteristics in the flue gas recirculation burner with coanda nozzles in the flue gas recirculation pipe. The inlet and outlet of flue gas recirculation pipes are directed toward the tangential direction of circular burner not toward the center of burner. The swirling flow is formed in the burner and it causes the reverse flow in the burner. The ratio of flue gas recirculation flow rate with the air flow rate was about 2.5 for the case with the coanda nozzle gap, 0.5mm and it was 1.5 for the case with the gap, 1.0mm. With the same coanda nozzle gap, the flue gas recirculation flow rate ratio had a little increase when the air flow rate changes from 1.1 to 2.2 times of ideal air flow rate.

Temperature Reduction with the Location of Window in a Turbine Building of Power Plant (발전소 터빈건물의 창문 위치에 따른 온도저감)

  • Ha, J.S.;Kim, T.K.;Jeong, K.H.
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.207-213
    • /
    • 2016
  • In this study, a thermal flow analysis was performed using the commercial code, ANSYS-FLUENT to reduce room temperature in a turbine building of power plant. The selected control volume of the operating floor and deaerator floor for the turbine building was respectively modelled. The skylight windows at the deaerator floor were employed for ventilation windows. Through the study, in the first we found that all window close of the deaerator floor is one alternative for reducing the temperature of the operating floor. The next thing we knew that for windows open at the front of the deaerator floor, the temperature of deaerator zone and crane zone can be respectively reduced to $1.5^{\circ}C$ and $1.6^{\circ}C$. In addition, for windows close at the rear of the deaerator floor, the temperature of deaerator zone and crane zone can be respectively reduced to 1.4 and $0.5^{\circ}C$. Therefore, it was concluded that a better choice is to open the front windows at deaerator floor to reduce the temperature of the entire deaerator floor having high temperature.

CUDA-based Parallel Bi-Conjugate Gradient Matrix Solver for BioFET Simulation (BioFET 시뮬레이션을 위한 CUDA 기반 병렬 Bi-CG 행렬 해법)

  • Park, Tae-Jung;Woo, Jun-Myung;Kim, Chang-Hun
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.1
    • /
    • pp.90-100
    • /
    • 2011
  • We present a parallel bi-conjugate gradient (Bi-CG) matrix solver for large scale Bio-FET simulations based on recent graphics processing units (GPUs) which can realize a large-scale parallel processing with very low cost. The proposed method is focused on solving the Poisson equation in a parallel way, which requires massive computational resources in not only semiconductor simulation, but also other various fields including computational fluid dynamics and heat transfer simulations. As a result, our solver is around 30 times faster than those with traditional methods based on single core CPU systems in solving the Possion equation in a 3D FDM (Finite Difference Method) scheme. The proposed method is implemented and tested based on NVIDIA's CUDA (Compute Unified Device Architecture) environment which enables general purpose parallel processing in GPUs. Unlike other similar GPU-based approaches which apply usually 32-bit single-precision floating point arithmetics, we use 64-bit double-precision operations for better convergence. Applications on the CUDA platform are rather easy to implement but very hard to get optimized performances. In this regard, we also discuss the optimization strategy of the proposed method.

New Methods for Assessing Liquefaction Potential Based on the Characteristics of Material (재료의 역학적 거동특성에 기초한 액상화 평가방법)

  • Kim, Gyeong-Hwan;Park, In-Jun;Kim, Su-Il
    • Geotechnical Engineering
    • /
    • v.14 no.5
    • /
    • pp.205-218
    • /
    • 1998
  • The purpose of this study is to develop and utilize new assessment of liquefaction potential based on DSC(disturbed state concept) and dissipated energy concept. The term liquefaction has suddenly loses its shear strength and behaves like a fluid. Liquefaction has been a source of a major damage during severe earthquake. In this study, the cyclic undrained behavior of Joomoonjin strand is investigated by using an automates triaxial testing device(C. K. Chan type). In order to assess liquefaction potential of saturated strand, DSC method and energy method are applied for the experimental data. The use of DSC method and energy method to define the liquefaction potential is verified through laboratory testis of cyclic triaxial test on saturated sand specimens. Based on the analytical results of DSC method, the relationship between the factor affecting liquefaction characteristics(Dr) and physical properties of the saturated santa(fs and D.) is found. Based on the analytical results of energy method, it is found that the initial liquefaction of rand is related to the significant change in the dissipated energy. Finally, it is shown that the DSC method and energy method can capture the liquefaction mechanism.

  • PDF

Rheological Properties of Bitumen for Reducing Negative Skin Friction (말뚝 부마찰력 저감용 역청재료의 유변학적 특성)

  • 박태순;윤수진
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.191-200
    • /
    • 2003
  • This paper presents the rheological properties of bitumen for reducing negative skin friction. The bitumen has been widely used due to both the cost and construction effectiveness. Also, it is well known that the use of bitumen for reducing negative skin friction renders the best results among other available methods. Three different modified bitumens were used for the testing programs. The physical tests include the penetration, the softening point and penetration index. The rheological tests include phase angle, complex modulus, creep tests and flow tests. The tests were conducted at four different temperatures(15, 30, 45 and 6$0^{\circ}C$) in order to simulate the field condition. The test results were analyzed using the phase angle, G$^*$/sin $\delta$, creep compliance and shear viscosity. The result of tests showed that the phase angle increased and G$^*$/sin $\delta$ decreased with the increase of temperature. The creep compliance increased as the loading time increased. The difference of the creep compliance is detected as the time and temperature are varied, however, the difference of the shear viscosity is not significant among the samples tested in this study. The rheological properties of the bitumen also showed that the physical testing method and the temperature dependant testing method are somewhat limited to showing and expressing the full rheological properties of the modified bitumen. The introduction of the time and the temperature dependent testing method is necessary to find out the full rheological properties of the modified bitumen.

Numerical Study of Turbulent Heat Transfer in Helically Coiled Tubes (나선형 튜브내의 난류 열전달에 대한 수치적 연구)

  • Yoon, Dong-Hyeog;Park, Ju-Yeop;Seul, Kwang-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.8
    • /
    • pp.783-789
    • /
    • 2012
  • In this study, turbulent flow and heat transfer characteristics in a helically coiled tube have been numerically investigated. Helically coiled tubes are commonly used in heat exchange systems to enhance the heat transfer rate. Accordingly, they have been widely studied experimentally; however, most studies have focused on the pressure drop and heat transfer correlations. The centrifugal force caused by a helical tube increases the wall shear stress and heat transfer rate on the outer side of the helical tube while decreasing those on the inner side of the tube. Therefore, this study quantitatively shows the variation of the local Nusselt number and friction factor along the circumference at the wall of a helical tube by varying the coil diameter and Reynolds number. It is seen that the local heat transfer rate and wall shear stress greatly decrease near the inner side of the tube, which can affect the safety of the tube materials. Moreover, this study verifies the previous experimental correlations for the friction factor and Nusselt number, and it shows that the correlation between the two in a straight tube can be applied to a helical tube. It is expected that the results of this study can be used as important data for the safety evaluation of heat exchangers and steam generators.

Numerical Study on the Arrangement of AIG for Determining the $NH_3$ Concentration Distribution in the Package Type of Small Scale SCR System (패키지형 소형 SCR 시스템 내 $NH_3$ 농도분포 제어를 위한 AIG의 배치에 관한 전산해석적 연구)

  • Park, Seon-Mi;Chang, Hyuk-Sang;Zhao, Tong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.5
    • /
    • pp.368-377
    • /
    • 2011
  • A package type of SCR (selective catalytic reduction) system that was proposed for removing the $NO_x$ found in flue gas from the small scale of air pollution sources was evaluated. The efficiency of the SCR system is determined by the proper utilization of catalytic media installed inside of the system, and the proper distribution of flow velocity and $NH_3$ concentration in the flue gas is a crucial factor for using the catalytic media. In this study, the distributions of $NH_3$ concentration were estimated under the various arrays and shapes of AIG at the given gas flow condition. The value of RMS (%) in $NH_3$ concentration is 95.3% at co-current flow (at $0^{\circ}$) injection but it is 90.1% at the condition of counter-current flow (at $120^{\circ}$) condition, which implies the counter-current injection is more favorable. By rearranging the $NH_3$ injection flow rates based on the distribution of velocity and $NH_3$ distribution in basic calculation, the value of RMS (%) in $NH_3$ concentration was reduced to 62.8%. The enhanced effect of $NH_3$ mixing by the combined effect of arrays and shapes are complied in the study.