• 제목/요약/키워드: 유정압 베어링

검색결과 29건 처리시간 0.024초

페룰 가공용 초정밀 무심 연삭기의 열 특성 해석 (Thermal Characteristic Analysis of a High-Precision Centerless Grinding Machine for Machining Ferrules)

  • 김석일;조재완
    • 한국정밀공학회지
    • /
    • 제23권1호
    • /
    • pp.193-200
    • /
    • 2006
  • To perform the finish grinding process of ferrules which are widely used as fiber optic connectors, a high-precision centerless grinding machine is necessary. The high-precision centerless grinding machine is consisted of the hydrostatic GW and RW spindle systems, hydrostatic RW feeding mechanism, RW swivel mechanism, on-machine GW and RW dressers, and concrete-filled steel bed. In this study, the thermal characteristics of the high-precision centerless grinding machine such as the temperature distribution, temperature rise and thermal deformation, are estimated based on the virtual prototype of the grinding machine and the heat generation rates of heat sources related to the machine operation conditions. The reliability of the predicted results is demonstrated by the temperature characteristics measured from the physical prototype. Especially, the predicted and measured results show the fact that the high-precision centerless grinding machine has very stable thermal characteristics.

고정밀 연삭기 주축용 가변 면적 자기 보상형 리스트릭터 유정압 베어링에 관한 연구 (A study on the hydrostatic bearing using self-controlled restrictor of grinding wheel spindle)

  • 조성만
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 추계학술대회 논문집 - 한국공작기계학회
    • /
    • pp.425-431
    • /
    • 1999
  • Nowadays development of electric and optical devices needs precision more and more. This study focuses on hydrostatic journal bearing of grinding wheel spindle. It presents theoretical analysis about cylinder type self-controlled restrictor to control flux of oil flowing into pockets around the hydrostatic journal bearing. As a result of this analysis, optimal properties to maximize bearing stiffness such as initial cross distance, supply pressure, diameter of two supply holes, pre-load of spring and clearance between spindle and housing can be obtained. Therefore, by using them it is possible to estimate bearing stiffness and the performance of grinding wheel spindle can be improved.

  • PDF

페룰 가공용 초정밀 무심 연삭기의 열 특성 해석 (Thermal Characteristic Analysis of a High-Precision Centerless Grinding Machine for Machining Ferrules)

  • 김석일;조재완
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.90-95
    • /
    • 2005
  • To perform the finish outside-diameter grinding process of ferrules which are widely used as fiber optic connectors, a high-precision centerless grinding machine is necessary. In this study, the thermal characteristics of the high-precision centerless grinding machine such as the temperature distribution, temperature rise and thermal deformation, are estimated based on the virtual prototype of the grinding machine and the heat generation rates of heat sources related to the machine operation conditions. The reliability of the predicted results is demonstrated by the temperature characteristics measured from the physical prototype. Especially, the predicted and measured results show the fact that the high-precision centerless grinding machine consisted of the hydrostatic GW and RW spindle systems, hydrostatic RW feeding mechanism, RW swivel mechanism, on-machine GW and RW dressers, and concrete-filled steel bed, has very stable thermal characteristics.

  • PDF

대형 선박엔진 크랭크샤프트 가공용 복합가공기 기술 개발 (Development of a Multi-Tasking Machine Tool for Machining Large Scale Marine Engine Crankshafts and Its Design Technologies)

  • 안호상;조용주;최영휴;이득우
    • 한국정밀공학회지
    • /
    • 제29권2호
    • /
    • pp.139-146
    • /
    • 2012
  • A multi-tasking machine tool for large scale marine engine crankshafts has been developed together with design technologies for its special devices. Since work pieces, that is, crankshafts to be machined are big and heavy; weight of over 100 tons, length of 10 m long, and diameter of over 3.5 m, several special purpose core devices are necessarily developed such as PTD (Pin Turning Device) for machining eccentric pin parts, face place and steady rest for chucking and resting heavy work pieces. PTD is a unique special purpose device of open-and-close ring typed structure equipped with revolving ring spindle for machining eccentric pins apart from journal. In order to achieve high rigidity of the machine tool, structural design optimization using TMSA (Taguch Method based Sequential Algorithm) has been completed with FEM structural analysis, and a hydrostatic bearing system for the PTD has been developed with theoretical hydrostatic analysis.

풍력 발전기 부품가공용 복합수직선반의 최적 설계에 관한 연구 (Optimization of Multi-tasking Vertical Lathe For Windmill Parts)

  • 최학봉;이종훈;박우상;신흥철;오정석;박천홍;이동윤
    • 한국정밀공학회지
    • /
    • 제29권2호
    • /
    • pp.147-155
    • /
    • 2012
  • Wind power, which is one of the promising renewable energies, has shown the high growth rate of 35 % of the annual average in the recent 5 years and also windmill related equipment market has been fast-growing. Yaw & Pitch bearing are the key parts of windmill and are machined by huge vertical lathe which is monopolized by the advanced countries. The purpose of this study is to develop the multi-tasking vertical lathe for 5 MW grade windmill bearings, which might be mass produced 3 or 5 years later. In this study, the structure of the crossrail and rotary table, which are the key units of the huge multi-tasking vertical lathe, were optimized through the finite element analysis. Also the basic performance of the rotary table has been evaluated.

자유곡면가공기용 초정밀 회전테이블의 설계 및 평가 (Design and Evaluation of an Ultra Precision Rotary Table for Freeform Machine Tools)

  • 황주호;박천홍
    • 한국정밀공학회지
    • /
    • 제27권7호
    • /
    • pp.94-100
    • /
    • 2010
  • This paper describes the design and evaluation procedure of an ultra-precision rotary table for freeform generating machined tools. Design of the thrust and journal hydrostatic bearings and experimental evaluation of the table were performed. To get the compact size and less lost motion direct drive servomotor with ultra precision encoder. From the considered design, following performance were confirmed by experiment. The total stiffness of the prototype rotary table was 483.6 $N/{\mu}m$ and 97.6 $N/{\mu}m$ for axial and radial direction, respectively. Rotational accuracy of the table was investigated by capacitive sensor and reversal measurement technique, and 0.10 ${\mu}m$ radial direction and 0.05 ${\mu}m$ axial direction of the rotational accuracy were confirmed. The micro resolution of the table was also investigated with displacement of capacitive sensor, and $0.5/10000^{\circ}$ of micro resolution was confirmed. Index accuracy of the table was evaluated by the autocollimator and polygon mirror, and the $\pm0.39$ arcsec accuracy and $\pm0.16$ arcsec repeatability of the table were confirmed. Those are under the general requirements of ultra precision rotary tables for freeform generating machined tools.

경면가공용 고정밀 CNC 선반 개발 (Development of a high precision CNC lathe for mirror surface machining)

  • 박청홍;이후상;신영재;이군석;김춘배
    • 한국정밀공학회지
    • /
    • 제14권3호
    • /
    • pp.82-88
    • /
    • 1997
  • In this paper, the development of a precision CNC lathe prototype for mirror surface machining is presented. To obtain high precision machining accuracy, a hydrostatically supported precision spindle and a sliding guideway with turcite pad are adopted as the motion elements. The machining accuracy of the prototype machine, and the motional accuracy of its motion elements are tested and evaluated to confirm the validity of the application of these elements on the prototype. The hydrostatic spindle shows 0.09 .mu. m of rotational accuracy and the guideway shows about 0.8 .mu. m/170mm of horizontal straightness. The sur- face roughness of cupper and aluminium cylinder machined by the prototype machine with diamond tool are 0.07 .mu. m and 0.10 .mu. m Rmax respectively. From these results, it is verified that the prototype lathe is avail- able for high precision machining.

  • PDF

대면적 미세패턴 롤 금형 가공용 초정밀 롤 선반 개발 (An Ultra-precision Lathe for Large-area Micro-structured Roll Molds)

  • 오정석;송창규;황주호;심종엽;박천홍
    • 한국정밀공학회지
    • /
    • 제30권12호
    • /
    • pp.1303-1312
    • /
    • 2013
  • We report an ultra-precision lathe designed to machine micron-scale features on a large-area roll mold. The lathe can machine rolls up to 600 mm in diameter and 2,500 mm in length. All axes use hydrostatic oil bearings to exploit the high-precision, stiffness, and damping characteristics. The headstock spindle and rotary tooling table are driven by frameless direct drive motors, while coreless linear motors are used for the two linear axes. Finite element method modeling reveals that the effects of structural deformation on the machining accuracy are less than $1{\mu}m$. The results of thermal testing show that the maximum temperature rise at the spindle outer surface is approximately $0.5^{\circ}C$. Finally, performance evaluations of the error motion, micro-positioning capability, and fine-pitch machining demonstrate that the lathe is capable of producing optical-quality surfaces with micron-scale patterns with feature sizes as small as $20{\mu}m$ on a large-area roll mold.

고정밀 대형 부품가공용 복합가공기 원천기술 개발 (Development of Core Technologies of Multi-tasking Machine Tools for Machining Highly Precision Large Parts)

  • 장성현;최영휴;김수태;안호상;최학봉;홍종승
    • 한국정밀공학회지
    • /
    • 제29권2호
    • /
    • pp.129-138
    • /
    • 2012
  • In this study, three types of large scale multi-tasking machine tools together with core technologies involved have been developed and introduced; a multi-tasking machine tool for large scale marine engine crankshafts, a multi-tasking vertical lathe for windmill parts, and a large scale 5-axis machine tool of gantry type. Several special purpose devices has been necessarily developed for the purpose of handling and machining big and heavy workpieces accurately, such as PTD (Pin Turning Device) with revolving ring spindle for machining eccentric crankshaft pins, hydrostatic rotary table and steady rest for supporting and resting heavy workpieces, and 2-axis automatic swiveling head for high-quality free surface machining. Core technologies have been also developed and adopted on their detail design stage; 1) structural design optimization with FEM structural analysis, 2) theoretical hydrostatic analysis for the PTD and rotary table bearings, 3) box-in-box type cross-rail and octagonal ram design to secure machine rigidity and accuracy, 4) constant spindle rpm control against gravitational torque due to unbalanced workpiece.