• 제목/요약/키워드: 유전체장벽 방전 플라즈마

검색결과 47건 처리시간 0.019초

간헐적 플라즈마 방전이 질소산화물의 탄화수소 선택적 촉매환원에 미치는 영향 (Effect of Intermittent Plasma Discharge on the Hydrocarbon Selective Catalytic Reduction of Nitrogen Oxides)

  • 윤경환;목영선
    • 공업화학
    • /
    • 제34권5호
    • /
    • pp.507-514
    • /
    • 2023
  • 촉매(Ag/γ-Al2O3) 충진형 유전체 장벽 방전 플라즈마 반응기를 이용한 질소산화물(NOx)의 선택적 촉매 환원을 조사하였다. 촉매 상에서 간헐적으로 플라즈마를 발생시킬 때 NOx의 환원제인 탄화수소가 부분 산화되어 알데하이드류를 생성하였으며, 알데하이드류의 높은 환원력으로 인해 촉매를 단독으로 사용한 경우에 비해 높은 NOx 전환율을 보여주었다. 동일한 운전 조건(온도: 250 ℃; C/N: 8)에서 비교한 NOx 저감 효율은 탄화수소(n-헵테인), 프로피온알데하이드, 뷰티르알데하이드에 대해 각각 47.5%, 92%, 96%로 나타났으며, 알데하이드류의 높은 질소산화물 환원 성능이 확인되었다. 간헐적 플라즈마 발생시 적정 조건을 파악하기 위하여, 고전압 on/off 주기를 0.5~3 min으로 조절하였고, 연속적인 플라즈마 발생의 경우와 동일한 에너지밀도에서 NOx 저감 성능을 비교하였다. 고전압을 2 min 간격으로 on/off 하여 간헐적으로 플라즈마를 생성시켰을 때 연속적인 플라즈마 발생 대비 가장 높은 질소산화물 저감 효율이 얻어졌다. 동일한 에너지밀도에서도 간헐적 플라즈마 방전의 경우가 연속 플라즈마에 비해 높은 NOx 저감 효율을 보이는 것은, 탄화수소가 분해되어 생성되는 알데하이드류 등의 중간생성물들이 NOx 저감 반응에 보다 효율적으로 이용되었기 때문이다.

수중 비열 유전체장벽 방전 플라즈마를 이용한 양식어류의 병원성세균 3종 및 Tetracycline계 항생제 제거 (Remove of Three Pathogenic Bacteria in Cultured Fish and Tetracycline Antibiotics Using Underwater Non-Thermal Dielectric Barrier Discharge Plasma)

  • 조규석;박종호
    • 한국수산과학회지
    • /
    • 제55권6호
    • /
    • pp.910-916
    • /
    • 2022
  • The purpose of this study is to evaluate the effect of underwater non-thermal dielectric barrier discharge plasma (DBD plasma) on the sterilization of three types of pathogenic bacteria that cause diseases in freshwater fish and the reduction of a tetracycline antibiotics. This experiment was conducted in the DBD plasma generator, and the voltages used to generate plasma were 11.6 kV and 23.1 kV. The measurement intervals were 0, 1, 5, 10 and 15 min. As a result of DBD plasma treatment, Aeromonas hydrophila, Edwardsiella tarda and Pseudomonas fluorescens were removed 93-99% after 5 min at 23.1 kV, and the tetracycline antibiotics were reduced 70-95% after 15 min at 23.1 kV. In this study, as a result of treating the effluent with DBD plasma at a fish farm where the medicinal bath was conducted with oxytetracycline-HCl (OTC-HCl) products, OTC-HCl decreased by 62% after 10 min at 23.1 kV.

유전체 장벽 방전 플라즈마 반응기를 이용한 페놀 처리 (Phenol Treatment Plasma Reactor of Dielectric Barrier Discharge)

  • 박영식
    • 한국환경과학회지
    • /
    • 제21권4호
    • /
    • pp.479-488
    • /
    • 2012
  • A Dielectric barrier discharge (DBD) plasma is shown in the present investigation to be effective of phenol degradation in the aqueous solutions in batch reactor with continuous air bubbling. Removal of phenol and effects of various parameters on the removal efficiency in the aqueous solution with high-voltage streamer discharge plasma are studied. The effect of 1st voltage (80 ~ 220 V), air flow rate (3 ~ 7 L/min), pH (3 ~ 11), electric conductivity of solution (4.16 ${\mu}S$/cm, deionized water) ~ 16.57 mS/cm (addition of NaCl 10 g/L) and initial phenol concentration (2.5 ~ 20.0 mg/L) were investigated. The observed results showed that phenol degradation was higher in the basic solution than that of the acidic. The optimum values on the 1st voltage and air flow rate for phenol degradation were 140 V and 6 L/min, respectively. It was considered that absorbance variation of $UV_{254}$ of phenol solution can be use as an indirect indicator of change of the non-biodegradable organic compounds within the treated phenol solution. Electric conductivity was not influenced the phenol degradation. To obtain the removal efficiency of phenol and COD of phenol over 97 % (initial phenol concentration, 10.0 mg/L), 80 min and 120 min were need, respectively. Phenol and COD degradation showed a pseudo-first order kinetics.

저온 플라즈마와 광촉매에 의한 NO/SO2 제거 (Removal of NO/SO2 by the low temperature plasmas and photocatalysts)

  • 김동주;김교선
    • 산업기술연구
    • /
    • 제26권A호
    • /
    • pp.181-188
    • /
    • 2006
  • In this study, we analyzed the effects of several process variables on the removal efficiencies of NO and $SO_2$ by the dielectric barrier discharge process combined with photocatalysts. The $TiO_2$ photocatalysts were coated onto the spherical-shaped glass beads as dielectric materials by the dip-coating method to analyze the effects of photodegradation reaction on the NO and $SO_2$ removal. As the voltage applied to the plasma reactor increases, or as the pulse frequency of applied voltage increases, the NO and $SO_2$ removal efficiencies increase. Also as the residence time increases, or as the initial concentration of NO decreases, the NO and $SO_2$ removal efficiencies increase. The higher the amount of $TiO_2$ particles coated onto the glass bead is, the larger the surface area of $TiO_2$ particles for the photodegradation reaction is and the NO and $SO_2$ are removed more quickly by the faster photodegradation reactions.

  • PDF

다공성 세라믹관내에서 생성되는 수중 유전체 장벽 방전 플라즈마를 이용한 아나톡신-a의 분해 (Decomposition of Aqueous Anatoxin-a Using Underwater Dielectric Barrier Discharge Plasma Created in a Porous Ceramic Tube)

  • 조진오;좌은진;목영선
    • 상하수도학회지
    • /
    • 제30권2호
    • /
    • pp.167-177
    • /
    • 2016
  • This work investigated the decomposition of aqueous anatoxin-a originated from cyanobacteria using an underwater dielectric barrier discharge plasma system based on a porous ceramic tube and an alternating current (AC) high voltage. Plasmatic gas generated inside the porous ceramic tube was uniformly dispersed in the form of numerous bubbles into the aqueous solution through the micro-pores of the ceramic tube, which allowed an effective contact between the plasmatic gas and the aqueous anatoxin-a solution. Effect of applied voltage, treatment time and the coexistence of nutrients such as $NO_3{^-}$, $H_2PO_4{^-}$ and glucose on the decomposition of anatoxin-a was examined. Chemical analyses of the plasma-treated anatoxin-a solution using liquid chromatography-mass spectrometry (LC-MS) and ion chromatography (IC) were performed to elucidate the mineralization mechanisms. Increasing the voltage improved the anatoxin-a decomposition efficiency due to the increased discharge power, but the energy required to remove a given amount of anatoxin-a was similar, regardless of the voltage. At an applied voltage of 17.2 kV (oxygen flow rate: $1.0L\;min^{-1}$), anatoxin-a at an initial concentration of $1mg\;L^{-1}$ (volume: 0.5 L) was successfully treated within 3 min. The chemical analyses using LC-MS and IC suggested that the intermediates with molecular weights of 123~161 produced by the attack of plasma-induced reactive species on anatoxin-a molecule were further oxidized to stable compounds such as acetic acid, formic acid and oxalic acid.

수처리용 유전체 장벽 방전 플라즈마 반응기 개발 (Development of Plasma Reactor of Dielectric Barrier Discharge for Water Treatment)

  • 김동석;박영식
    • 한국환경과학회지
    • /
    • 제21권5호
    • /
    • pp.597-603
    • /
    • 2012
  • Non-thermal plasma processing using a dielectric barrier discharge (DBD) has been investigated as an alternative method for the degradation of non-biodegradable organic compounds in wastewater. The active species such as OH radical, produced by the electrical discharge may play an important role in degrading organic compound in water. The degradation of N, N-Dimethyl-4-nitrosoaniline (RNO) was investigated as an indicator of the generation of OH radical. The DBD plasma reactor of this study consisted of a plasma reactor, recycling pump, power supply and reservoir. The effect of diameter of external reactor (15 ~ 40 mm), width of ground electrode (2.5 ~ 30 cm), shape (pipe, spring) and material (copper, stainless steel and titanium) of ground electrode, water circulation rate (3.1 ~ 54.8 cm/s), air flow rate (0.5 ~ 3.0 L/min) and ratio of packing material (0 ~ 100 %) were evaluated. The experimental results showed that shape and materials of ground were not influenced the RNO degradation. Optimum diameter of external reactor, water circulation rate and air flow rate for RNO degradation were 30 mm, 25.4 cm/s and 4 L/min, respectively. Ground electrode length to get the maximum RNO degradation was 30 cm, which was same as reactor length. Filling up of glass beads decreased the RNO degradation. Among the experimented parameters, air flow rate was most important parameters which are influenced the decomposition of RNO.

충전층 플라즈마 반응기에서 Ni-CeO2/γ-Al2O3 촉매를 이용한 프로페인-합성 가스 건식 개질 (Dry reforming of Propane to Syngas over Ni-CeO2/γ-Al2O3 Catalysts in a Packed-bed Plasma Reactor)

  • 라미아 술타나;Md. 샤히누르 라만;M.S.P. 수드하카란;Md. 목터 호세인;목영선
    • 청정기술
    • /
    • 제25권1호
    • /
    • pp.81-90
    • /
    • 2019
  • 프로페인($C_3H_8$)의 건식 개질($CO_2$ 개질)을 통한 합성 가스($H_2$와 CO 혼합물) 제조를 위해 $Ni-CeO_2/{\gamma}-Al_2O_3$ 촉매가 충진된 유전체 장벽 방전 플라즈마 반응기를 사용하였다. 열 또는 플라즈마에 의해 환원된 $Ni-CeO_2/{\gamma}-Al_2O_3$ 촉매를 사용하여 $C_3H_8/CO_2$ 비율 1/3, 총 유량 $300mL\;min^{-1}$에서 플라즈마-촉매 건식 개질을 수행하였다. 건식 개질에 대한 촉매 활성은 온도범위 $500{\sim}600^{\circ}C$에서 평가되었다. $Ni-CeO_2/{\gamma}-Al_2O_3$ 촉매 제조를 위해 전구물질 수용액(질산니켈, 질산세륨)으로 함침된 ${\gamma}-Al_2O_3$를 공기 분위기에서 소성시킨 후, $H_2/Ar$ 분위기에서 환원시켰다. 촉매 특성 조사에는 X-선 회절분석기(XRD), 투과전자현미경(TEM), 전계 방출 주사전자현미경(FE-SEM), 승온 탈착($H_2-TPD$, $CO_2-TPD$) 및 라만 분광기가 이용되었다. 열로 환원된 촉매와 비교하면 플라즈마 방전하에서 환원된 $Ni-CeO_2/{\gamma}-Al_2O_3$ 촉매가 개질 반응을 통한 합성 가스 생산에서 보다 우수한 촉매 활성을 나타내었다. 또한, 플라즈마로 환원된 $Ni-CeO_2/{\gamma}-Al_2O_3$가 개질 반응의 문제점인 탄소퇴적 관점에서 장기 촉매 안정성을 보여주었다.