• Title/Summary/Keyword: 유전적프로그래밍

Search Result 54, Processing Time 0.02 seconds

A Study on Weight Estimation Model of Floating Offshore Structures using Enhanced Genetic Programming Method (개선된 유전적 프로그래밍 방법을 이용한 부유식 해양 구조물의 중량 추정 모델 연구)

  • Um, Tae-Sub;Roh, Myung-Il;Shin, Hyunkyoung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • The weight estimation of floating offshore structures such as FPSO, TLP, semi-Submersibles, Floating Offshore Wind Turbines etc. in the preliminary design, is one of direct measures of both construction cost and basic performance. Through both literature investigation and internet search, the weight data of floating offshore structures such as FPSO and TLP was collected. In this study, the weight estimation model with the genetic programming was suggested for FPSO. The weight estimation model using genetic programming was established by fixing the independent variables based on this data. In addition, the correlation analysis was performed to make up for the weak points of genetic programming; it is apt to induce over-fitting when the number of data is relatively smaller than that of independent variables. That is, by reducing the number of variables through the analysis of the correlation between the independent variables, the increasing effect in the number of weight data can be expected. The reliability of the developed weight estimation model was within 2% of error rate.

Response Surface Modeling by Genetic Programming II: Search for Optimal Polynomials (유전적 프로그래밍을 이용한 응답면의 모델링 II: 최적의 다항식 생성)

  • Rhee, Wook;Kim, Nam-Joon
    • Journal of Information Technology Application
    • /
    • v.3 no.3
    • /
    • pp.25-40
    • /
    • 2001
  • This paper deals with the problem of generating optimal polynomials using Genetic Programming(GP). The polynomial should approximate nonlinear response surfaces. Also, there should be a consideration regarding the size of the polynomial, It is not desirable if the polynomial is too large. To build small or medium size of polynomials that enable to model nonlinear response surfaces, we use the low order Tailor series in the function set of GP, and put the constrain on generating GP tree during the evolving process in order to prevent GP trees from becoming too large size of polynomials. Also, GAGPT(Group of Additive Genetic Programming Trees) is adopted to help achieving such purpose. Two examples are given to demonstrate our method.

  • PDF

Bond Graph/Genetic Programming Based Automated Design Methodology for Multi-Energy Domain Dynamic Systems (멀티-에너지 도메인 동적 시스템을 위한 본드 그래프/유전프로그래밍 기반의 자동설계 방법론)

  • Seo, Ki-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.6
    • /
    • pp.677-682
    • /
    • 2006
  • Multi-domain design is difficult because such systems tend to be complex and include a mixtures of electrical, mechanical, hydraulic, and thermal components. To design an optimal system, unified and automated procedure with efficient search technique is required. This paper introduces design method for multi-domain system to obtain design solutions automatically, combining bond graph which is domain independent modeling tool and genetic programming which is well recognized as a powerful tool for open-ended search. The suggested design methodology has been applied for design of electric fitter, electric printer drive, and and pump system as a proof of concept for this approach.

인공 진화에 의한 학습 및 최적화

  • 장병탁
    • ICROS
    • /
    • v.1 no.3
    • /
    • pp.52-61
    • /
    • 1995
  • 본 고에서는 진화계산의 동작 원리와 이론적 기반에 대해 살펴봄으로써 그 원리를 이해하고 앞으로의 응용가능성에 대하여 고찰하고자 한다. 이를 위해 먼저 대부분의 진화 알고리즘에 공통되는 기본 구성 요소와 계산절차를 기술하고, 진화 알고리즘을 이용하여 특정문제를 풀고자 할 때 고려할 사항에 대하여 기술한다. 다음에는 간단한 응용 문제를 예로 들어 이 문제에 진화 알고리즘을 적용하고 그 동작과정을 추적함으로써 실제 적용에 있어서의 여러 가지 결정사항과 그 수행과정을 구체적으로 살펴본다. 또한 진화 알고리즘의 이론적 배경을 이해하기 위해 스키마와 빌딩 블록 그리고 스키마 정리에 대해서 알아본다. 마지막으로 진화계산방식과 다른 지능적 계산 기술들과의 융합 가능성의 예로서, 유전 프로그래밍에 의한 신경망 구조의 설계 및 학습에 대하여 살펴본다.

  • PDF

Improvement of Genetic Algorithm for Evaluating X-ray Reflectivity on Multilayer Mirror (다층박막 거울의 반사율 평가를 위한 유전 알고리즘의 개선)

  • Chon, Kwon Su
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.1
    • /
    • pp.69-75
    • /
    • 2020
  • Multilayer mirrors have widely been used not only in the industry but also in the medical field. X-ray reflectivity was measured by X-ray diffractometer to evaluate the performance of W/C multilayer mirror with 40 layers. Genetic algorithm are used to obtain thickness, density, and interfacial roughness for each of the 40 layers. The existing uniform random selection causes a problem that the solution does not converge or the error increases even if it convergence. To reduce the time to calculate the fitness of the genetic algorithm, the genetic algorithm was written in C/C++ parallel programming. The genetic algorithm showed excellent scalability of linear time increase with increasing number of generation and population. The genetic algorithm was selected with uniform and Gaussian randomness of 1:1 to improve the convergence of solution. The improved genetic algorithm can be applied to characterize each layer of a sample with more than a few tens of layers, such as a multilayer mirror.

A Study on the Relation between Hull Geometric Characteristics and Performance in the Yacht Design (요트 설계시 선형의 기하학적 특성과 성능 사이의 관련성에 관한 연구)

  • 하득기;김수영;김용재
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.6
    • /
    • pp.91-95
    • /
    • 2003
  • Yacht design is significantly affected by the hull geometrical characteristics. Therefore, it is necessary to closely examine the relation between hull and performance, before considering characteristics of sea condition. In this study, Genetic Programming is used to derive a formula the relationship between hull geometric characteristics and performance. Using the formula, a new guideline is proposed to determine performance of a yacht.

Development of SW-STEAM Education Program Using Monte Carlo Simulation: Focusing on Mendelian Inheritance (몬테카를로 시뮬레이션을 활용한 SW융합교육 프로그램 개발: 멘델의 유전 원리를 중심으로)

  • Kim, Bongchul;Yoo, Hyejin;Oh, Seungtak;Namgoong, Dongkook;Kim, Jonghoon
    • Journal of The Korean Association of Information Education
    • /
    • v.26 no.2
    • /
    • pp.97-104
    • /
    • 2022
  • As the era of digital transformation begins in earnest, the importance of convergent thinking based on software, artificial intelligence, and big data is increasing. In line with these social needs, this study developed a 5th hour SW-STEAM education program using Monte Carlo simulation techniques for Mendelian inheritance in the field of life science. By programming and implementing Mendelian inheritance using Monte carlo simulation, the program was organized so that not only convergent thinking skills but also related knowledge could be understood in depth. In order to verify the validity of the developed education program, 11 experts in related fields were requested to test the content validity, and the validity was verified by meeting the CVR reference value of 0.59 suggested by Lawshe.

Time Series Perturbation Modeling Algorithm : Combination of Genetic Programming and Quantum Mechanical Perturbation Theory (시계열 섭동 모델링 알고리즘 : 운전자 프로그래밍과 양자역학 섭동이론의 통합)

  • Lee, Geum-Yong
    • The KIPS Transactions:PartB
    • /
    • v.9B no.3
    • /
    • pp.277-286
    • /
    • 2002
  • Genetic programming (GP) has been combined with quantum mechanical perturbation theory to make a new algorithm to construct mathematical models and perform predictions for chaotic time series from real world. Procedural similarities between time series modeling and perturbation theory to solve quantum mechanical wave equations are discussed, and the exemplary GP approach for implementing them is proposed. The approach is based on multiple populations and uses orthogonal functions for GP function set. GP is applied to original time series to get the first mathematical model. Numerical values of the model are subtracted from the original time series data to form a residual time series which is again subject to GP modeling procedure. The process is repeated until predetermined terminating conditions are met. The algorithm has been successfully applied to construct highly effective mathematical models for many real world chaotic time series. Comparisons with other methodologies and topics for further study are also introduced.

Autonomous Bipedal Locomotion with Evolutionary Algorithm (진화적 알고리즘을 이용한 자율적 2족 보행생성)

  • Ok, Soo-Youl
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.5
    • /
    • pp.610-616
    • /
    • 2004
  • In the research of biomechanical engineering, robotics and neurophysiology, to clarify the mechanism of human bipedal walking is of major interest. It serves as a basis of developing several applications such as rehabilitation tools and humanoid robots. Nevertheless, because of complexity of the neuronal system that interacts with the body dynamics system to make walking movements, much is left unknown about the details of locomotion mechanism. Researchers were looking for the optimal model of the neuronal system by trials and errors. In this paper, we applied Genetic Programming to induce the model of the nervous system automatically and showed its effectiveness by simulating a human bipedal walking with the obtained model.

개선된 다이나믹 프로그래밍과 품질 정보 및 퍼지 추론 기법을 이용한 DNA 염기 서열 배치 알고리즘

  • Lee, Seung-Hwan;Park, Choong-Shik;Kim, Kwang-Baek
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2007.05a
    • /
    • pp.341-350
    • /
    • 2007
  • DNA 염기 서열 배치 알고리즘은 분자 생물학 분야에서 단백질과 핵산 서열들의 분석에서 중요한 방법이다. 생물학적인 염기 서열들은 그들 사이의 유사성과 차이점을 나타내기 위해 정렬된다. 본 논문에서는 기존의 DNA 염기 서열 배치 방법을 개선하기 위하여 DP(Dynamic Programming) 알고리즘의 비용증가( O (nm) ) 문제를 해결하는 Quadrant 방법과 품질 정보 및 퍼지 추론시스템(fuzzy inference system)을 적용한 DNA 염기 서열 배치 알고리즘을 제안한다. 본 논문에서 제안한 DNA 염기 서열 배치 알고리즘은 Quadrant 방법을 적용하여 Needleman-Wunsch의 DP 기반 알고리즘에서의 행렬 생성 단계에서 발생하는 불필요한 정렬 계산을 제거하여 전체 수행 시간을 단축하고, 각 DNA 염기 서열 단편 각각의 길이 차이와 낮은 품질의 DNA 염기 빈도를 퍼지 추론 시스템에 적용하여 지능적으로 갭 비용(gap cost)을 동적으로 조정한다. 제안된 알고리즘의 성능 평가를 위해 NCBI (National Center for Biotechnology Information)의 실제 유전체 데이터로 성능을 분석한 결과, 제안된 알고리즘이 기존의 품질정보만을 이용한 알고리즘보다 개선된 것을 확인하였다.

  • PDF