• Title/Summary/Keyword: 유전자 이동

Search Result 540, Processing Time 0.023 seconds

Influence of VEGF Genetic Polymorphism on Peritoneal Solute Transport in Pediatric Dialysis Patients (소아 복막투석환자에서 혈관내피성장인자 유전자 다형성이 복막의 용질이동성에 미치는 영향)

  • Choi, Hyun-Jin;Paik, Kyung-Hoon;Cho, Hee-Yeon;Kang, Hee-Kyung;Cheong, Hae-Il;Choi, Yong;Ha, Il-Soo
    • Childhood Kidney Diseases
    • /
    • v.14 no.2
    • /
    • pp.166-173
    • /
    • 2010
  • Purpose : Genetic and clinical factors can influence the permeability of the peritoneal membrane. The peritoneal equilibration test (PET) is helpful in measuring peritoneal permeability in peritoneal dialysis (PD). We investigated the influence of genetic polymorphism of vascular endothelial growth factor (VEGF) on the PET parameters. Methods : Pediatric patients who underwent PET within 12 months of initiating PD at Seoul National University Children's Hospital and Samsung Medical Center were selected. The patients with positive history of peritonitis before PET were excluded. The VEGF -2578C/A, -14978T/C, -1154G/A, -634G/C, and +936C/T single-nucleotide polymorphisms were genotyped. Results : The mean 4-hour dialysate-to-plasma ratio for creatinine (D/P creatinine) and the mean 4-hour dialysate glucose to baseline dialysate glucose ratio (D/$D_0$ glucose) were $0.56{\pm}0.13$ and $0.43{\pm}0.11$, respectively. The patients with haplotype CTGGC showed higher 4-hour D/P creatinine ($0.67{\pm}0.12$ vs $0.50{\pm}0.09$, P=0.007) and lower 4-hour D/$D_0$ glucose ($0.35{\pm}0.12$ vs $0.47{\pm}0.08$, P=0.037) than those without haplotype CTGGC. Conclusion : The VEGF genetic polymorphism may influence the peritoneal solute transport.

Isolation and Analysis of the Yeast Mutant Gene, soo1-1, which Confers the Defect in $\beta$-1,3-glucan Biosynthesis (효모의 베타-1,3-글루칸 생합성 결함을 초래하는 돌연변이 유전자(soo1-1)의 분리 및 분석)

  • 이재준;이동원;김기현;박희문
    • Korean Journal of Microbiology
    • /
    • v.37 no.1
    • /
    • pp.42-48
    • /
    • 2001
  • Allele rescue and sequence analysis of soo1-1 allele in Saccharomyces cerevisiae mutant LP0353 revealed that soo1-1 is identical to the previously reported ret1-1 allele, which has a base substitution of A for $G^{681}$ leading to an amino acid substitution of aspartic acid for $glycine^{227}$ in Soolp. However, it was revealed that the addition of osmotic stabilizer, such as 1.2M sorbitol can rescue the temperature sensitive phenotype of the ret1-1 mutant and that the soo1-1/ret1-1 mutation may confer defects in post-translational modification of proteins involved in the yeast cell wall biogenesis. Evidence for a putative role of 5th WD40 domain of the Soo1p/$\alpha$-COP in the construction and maintenance of cell walls was also presented by complementation test with deletion constructs of the SOOl.

  • PDF