• Title/Summary/Keyword: 유전자 알고리즘(진화연산)

Search Result 36, Processing Time 0.027 seconds

Self-tuning of Operator Probabilities in Genetic Algorithms (유전자 알고리즘에서 연산자 확률 자율조정)

  • Jung, Sung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.37 no.5
    • /
    • pp.29-44
    • /
    • 2000
  • Adaptation of operator probabilities is one of the most important and promising issues in evolutionary computation areas. This is because the setting of appropriate probabilities is not only very tedious and difficult but very important to the performance improvement of genetic algorithms. Many researchers have introduced their algorithms for setting or adapting operator probabilities. Experimental results in most previous works, however, have not been satisfiable. Moreover, Tuson have insisted that “the adaptation is not necessarily a good thing” in his papers[$^1$$^2$]. In this paper, we propose a self-tuning scheme for adapting operator probabilities in genetic algorithms. Our scheme was extensively tested on four function optimization problems and one combinational problem; and compared to simple genetic algorithms with constant probabilities and adaptive genetic algorithm proposed by Srinivas et al[$^3$]. Experimental results showed that our scheme was superior to the others. Our scheme compared with previous works has three advantages: less computational efforts, co-evolution without additional operations for evolution of probabilities, and no need of additional parameters.

  • PDF

Gene Expression Analysis by Co-evolutionary Biclustering (유전자 발현 분석을 위한 공진화적 바이클러스터링 기법)

  • Joung Je-Gun;Kim Soo-Jin;Zhang Byoung-Tak
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06a
    • /
    • pp.22-24
    • /
    • 2006
  • 마이크로어레이는 전체 유전체 수준의 mRNA 발현 여부에 대한 측정이 가능하다는 점에서 분자생물학의 실험 도구로서 가장 강력한 도구 중에 하나로 부각되어 있다. 현재까지 마이크로어래이의 결과로부터 유사한 발현 패턴을 찾기 위한 여러 가지 바이클러스터링 알고리즘들이 개발되어 왔다. 하지만 대다수의 알고리즘들이 최적의 바이클러스터들을 찾기보다는 일정 수준의 가능한 바이클러스터의 결과만을 제시하고 있다. 본 논문에서는 다른 개체집단들과 상호 진화하는 공진화적 학습에 의한 진화연산 기법을 통하여 유전자-조건의 매트릭스로부터 열과 행을 동시에 클러스터링하는 공진화적 바이클러스터링 알고리즘(co-evolutionary biclustering algorithm: CBA)을 제안하고자 한다. CBA는 유전자발현 데이터에서 유전자-조건의 상호의존적인 부성분들로 구성된 최적화 문제에 적합한 계산방식이라고 할 수 있다. 인간 유전자 발현 데이터에 대한 실험 결과. 제시한 알고리즘은 이전의 알고리즘에 비해 발견한 바이클러스터의 패턴 유사도에 있어서 우수한 성능을 보이고 있다.

  • PDF

Search of Transcriptional Motif Combination using Evolutionary Algorithms (진화 알고리즘을 통한 전사 조절 모티프 조합 탐색)

  • 이제근;정제균;오석준;장병탁
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.328-330
    • /
    • 2004
  • 유전자 발현은 다양한 전사 인자들의 상호 작용에 의해서 조절되어진다 이러한 전사 인자들에 존재하는 모티프는 직접적으로 조절 작용을 위한 기능을 수행한다. 또한 대부분의 경우에서 여러 모티프가 함께 유전자 발현 기작을 위하여 조절 작용을 한다. 따라서 이러한 모티프들이 어떤 조합으로 함께 전사 과정에 관여하는지 여부를 밝히는 작업은 중요한 일이다. 본 논문에서 진화 연산을 응용하여, 다양한 조건 하에 전사 과정에 중요하게 작용하는 모티프들의 조합을 알아보았고, 그 결과를 기본적인 k-Means 알고리즘 등과 비교하여 제안한 방법이 유전자들의 상관관계에 있어서 보다 우수한 결과를 보임을 알 수 있었다.

  • PDF

Design of Genetic Algorithm Processor(GAP) for Evolvable Hardware (진화하드웨어를 위한 유전자 알고리즘 프로세서(GAP) 설계)

  • Sim, Kwee-Bo;Kim, Tae-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.5
    • /
    • pp.462-466
    • /
    • 2002
  • Genetic Algorithm (GA) which imitates the process of nature evolution is applied to various fields because it is simple to theory and easy to application. Recently applying GA to hardware, it is to proceed the research of Evolvable Hardware(EHW) developing the structure of hardware and reconstructing it. And it is growing a necessity of GAP that embodies the computation of GA to the hardware. Evolving by GA don't act in the software but in the hardware(GAP) will be necessary for the design of independent EHW. This paper shows the design GAP for fast reconfiguration of EHW.

Performance Improvement of Genetic Programming Based on Reinforcement Learning (강화학습에 의한 유전자 프로그래밍의 성능 개선)

  • 전효병;이동욱;심귀보
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.3
    • /
    • pp.1-8
    • /
    • 1998
  • This paper proposes a reinforcement genetic programming based on the reinforcement learning method for the performance improvement of genetic programming. Genetic programming which has tree structure program has much flexibility of problem expression because it has no limitation in the size of chromosome compared to the other evolutionary algorithms. But worse results on the point of convergence associated with mutation and crossover operations are often due to this characteristic. Therefore the sizes of population and maximum generation are typically larger than those of the other evolutionary algorithms. This paper proposes a new method that executes crossover and mutation operations based on reinforcement and inhibition mechanism of reinforcement learning. The validity of the proposed method is evaluated by appling it to the artificial ant problem.

  • PDF

A Genetic Algorithm for A Pathfinding of Game Character (게임 캐릭터의 경로탐색을 위한 유전자 알고리즘)

  • Kang, Myung-Ju
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2014.01a
    • /
    • pp.321-322
    • /
    • 2014
  • 게임에서 캐릭터가 현재 위치에서 목적지까지 경로를 탐색하는 것은 매우 중요하다. 특히, 오브젝트나 벽 등의 장애물들이 배치된 복잡한 게임 맵에서는 이러한 장애물을 회피하면서 가능한 최단 경로를 찾아 이동해야 한다. 본 논문에서는 복잡한 게임 맵 상에서 캐릭터가 목적지까지 최단 경로를 탐색하는 방법으로 유전자 알고리즘을 적용하는 방법을 제안한다. 유전자 알고리즘은 모집단(Population)을 구성하는 염색체의 인코딩 및 디코딩, 진화를 위한 연산자인 교차연산(Crossover)과 돌연변이연산(Mutation), 그리고 염색체를 평가하는 목적함수로 구성된다. 본 논문에서는 염색체 구성을 시작 노드에서 목적지 노드까지의 전체 노드로 구성하기 보다는 캐릭터의 현재노드에서 이동할 수 있는 8방향만으로 구성하여 염색체의 크기를 줄였고, 이를 통해 염색체의 인코딩과 디코딩 연산 시간을 줄일 수 있었다.

  • PDF

Fuzzy Modeling Using DNA-Coded Genetic Algorithm (DNA 코드 유전화 알고리즘을 이용한 퍼지 모델링)

  • Yu, Jin-Young;Lee, Yeun-Woo;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2295-2297
    • /
    • 2003
  • 본 논문에서는 발생모델인 DNA 코딩 기법과 진화 모델인 유전자 알고리즘을 이용한 비선형 시스템의 퍼지 모델 링에 대한 새로운 방법을 제안한다. DNA 코딩 기법은 실제 생체 분자 (bio-molecule)를 계산의 도구로 사용하는 새로운 계산 방법으로, 진화 연산과 결합하여 인공지능의 새로운 분야로 부각되고 있다. 그러나, 실제 생체 분자를 계산의 도구로 사용하기 때문에 기존의 컴퓨터에 적용하기 어렵고, 단순히 합성과 분리라는 간단한 방법으로 해를 구하기 때문에 보다 효과적인 알고리즘을 개발하여야 할 필요성이 있다. 따라서 본 논문에서는 DNA 코드 유전자 알고리즘을 제안하며, 제안된 방법은 비선형 시스템의 퍼지 모델링에 적용하였으며, 기존의 유전자 알고리즘과 비교를 통하여 그 우수성을 입증하였다.

  • PDF

The Optimum Design of Truss Dome Structures by Evolution Strategy (진화전략을 이용한 트러스 돔 구조물의 최적설계)

  • Han, Sang-Eul;Kim, Man-Jung;Lee, Jae-Young;Ryu, Ji-Su
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.396-399
    • /
    • 2009
  • 본 논문의 연구 목적은 생물의 진화 현상을 모방한 진화전략 알고리즘을 이용하여 돔형 트러스 구조물을 최적화 설계하는 것이다. 최적화 방법으로 부재 단면적의 최적화 값을 찾음으로써 최적 목적값 또는 최소 구조물 중량을 산출하는데 목적이 있다. 진화전략 알고리즘은 1960년대 중반, 실수기반 매개변수의 최적화로부터 소개되어 1970년대 많은 발전을 하였다. 진화전략은 컴퓨터 시스템 최적화 알고리즘 연구분야에서 많이 활용되며, 더불어 사용되는 유전자 알고리즘과는 다른 몇 개의 연산자를 가지고 있다. 본 논문에서는 진화전략에서 사용되는 연산자를 소개하고 연산자간의 논리 흐름과 수치예제로써 최적설계의 적합성을 확인해볼 수 있다.

  • PDF

An Efficient Evolutionary Algorithm for Optimal Arrangement of RFID Reader Antenna (RFID 리더기 안테나의 최적 배치를 위한 효율적인 진화 연산 알고리즘)

  • Soon, Nam-Soon;Yeo, Myung-Ho;Yoo, Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.10
    • /
    • pp.40-50
    • /
    • 2009
  • Incorrect deployment of RFID readers occurs reader-to-reader interferences in many applications using RFID technologies. Reader-to-reader interference occurs when a reader transmits a signal that interferes with the operation of another reader, thus preventing the second reader from communicating with tags in its interrogation zone. Interference detected by one reader and caused by another reader is referred to as a reader collision. In RFID systems, the reader collision problem is considered to be the bottleneck for the system throughput and reading efficiency. In this paper, we propose a novel RFID reader anti-collision algorithm based on evolutionary algorithm(EA). First, we analyze characteristics of RFID antennas and build database. Also, we propose EA encoding algorithm, fitness algorithm and genetic operators to deploy antennas efficiently. To show superiority of our proposed algorithm, we simulated our proposed algorithm. In the result, our proposed algorithm obtains 95.45% coverage rate and 10.29% interference rate after about 100 generations.

A Knowledge-based Encoding for Performance Improvement of Interactive Genetic Algorithm (대화형 유전자 알고리즘의 성능향상을 위한 지식기반 인코딩)

  • 김희수;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04b
    • /
    • pp.211-213
    • /
    • 2000
  • 진화 연산은 최적화 및 분류 작업을 필요로 하는 대부분의 응용 분야에서 매우 효율적인 해결 방법을 제시해 주지만, 예술이나 감성 등의 특정 분야에의 적용에 있어서는 그 한계를 드러낸다. 이를 극복하기 위해서 여러 가지 기술들이 제안되었으며, 이 중에서 특히 대화형 유전자 알고리즘이 오늘날 널리 연구되고 있다. 대화형 유전자 알고리즘은 상호 작용을 통하여 사용자의 평가치를 개체의 적합도로 받아들이고, 이를 기반으로 집단을 진화시키는 방법이다. 본 논문에서는 이를 의상디자인 지원 시스템에 적용시킴으로써 일반적으로 나타내기 어려운 사용자의 선호도나 감성을 디자인 과정에 반영할 수 있었다. 또한, 이론에 기반한 분석 및 실험적인 결과를 통해, 제안된 인코딩 방법이 유용함을 알 수 있었다.

  • PDF