본 논문에서는 유전자 알고리즘의 일반적인 문제점인 과도한 저장공간의 소모와 탐색의 비효율성을 줄이기 위해 PBIL을 이용한 단순한 스테레오 정합 기법을 제안한다. PBIL은 확률벡터에 기반해서 통계적 탐색과 경쟁학습을 이용하는 변종 유전자 알고리즘이며 확률벡터의 사용으로 인해 직렬 및 병렬 유전자 알고리즘군에 비해 단순한 구조를 가진다. 본 논문에서는 이 PBIL을 스테레오 정합 환경에 맞게 변형 및 단순화시켜 정합 알고리즘을 개발한다. 높은 적응성을 갖는 염색체는 생존 확률 또한 높다는 진화 법칙을 보존하면서 유전자 풀, 염색체 교차 및 유전자 돌연변이를 제거할 수 있으며 그 결과 저장공간을 줄이고 정합 규칙을 간소화하여 계산 비용을 감소시킬 수 있다. 추가적으로 다해상도 정합 기법처럼 넓은 영역의 변이 일관성을 획득하기 위해 변이 연속성에 대한 이웃들의 거리를 제어하는 방식을 추가하여 고정된 작은 정합창을 사용하면서 안정된 결과를 얻을 수 있게 한다. 마지막으로 단순한 시스템에 적용될 수 있게 하기 위해서 확률벡터를 사용하지 않는 제안한 알고리즘의 소형 대안 기법을 제시한다.
기존의 블록 정합 알고리즘인 FS(Full Search) 알고리즘은 정확한 움직임 벡터를 구할 수 있으나 요구되는 계산량이 많다. 반면에 국부 탐색을 하는 고속 블록 정합 알고리즘은 FS보다 빠른 탐색을 할 수 있으나 FS 보다 정합 오차가 크다. 본 연구는 전역탐색을 하는 유전자 알고리즘에 빠른 탐색을 하는 블록 정합 알고리즘인 NTSS(New Three Ste Search)알고리즘을 제안한다. 제안한 방법에서 각 염색체는 움직임 벡터를 표현하며 초기 염색체는 탐색 공간의 중심 탐색점 가까이에 고정적으로 발생시키고 각 염색체는 MSE(Mean Square Error)값으로 평가된다. 평가된 염색체 중 작은 MSE값을 가지는 염색체가 NTSS의 탐색점 수만큼 다음 세대의 탐색점으로 선택된다. 선택된 염색체는 세대를 거치면서 돌연변이 연산과 교배연산이 행해지고 이 때 돌연변이 연산의 크기는 NTSS의 탐색 단계 크기가 된다. 제안한 세대 수 만큼 반복 후 최소의 MSE 값을 가지는 유전자가 해당 블록의 움직임 벡터가 된다. 시뮬레이션 결과 제안한 방법을 가장 우수한 성능을 가지는 FS와 유사한 MSE 값을 얻을 수 있었고 동시에 FS에서 요구되는 계산량에 비해 많은 계산량을 줄일 수 있었다.
k-medoid 클러스터링 알고리즘은 고정된 클러스터 수(k)를 가지고 실험하기 때문에 데이터에 대한 사전 지식이 없으면 올바른 분석이 어렵고, 클러스터 수를 변경하면서 여러 번 반복 실험하여 실험 결과에 대한 타당성을 조사해야 하기 때문에 데이터의 크기가 커질수록 시간 비용이 증가하는 단점이 생긴다. 본 논문에서는 k-medoid 클러스터링 알고리즘 분석에 있어서 가장 어려운 문제 중 하나인 적절한 클러스터 수 k를 사회 네트워크 분석 방법 중 매개중심 값을 이용하여 찾는 새로운 방법을 제안하고 이를 실제 마이크로 어레이 데이터에 적용하여 유전자 알고리즘에 기반한 k-medoid 클러스터링을 수행함으로써 좀 더 정확한 클러스터링 결과를 보인다.
본 논문에서는 고정 비용을 고려한 비선형 수송문제(Fixed Charge Non-linear Transportation Problem)에 대해 다룬다. 이는 한 종류의 상품을 다수의 공급처에서 다수의 수급처로 수송할 때, 총 수송비용과 고정 비용이 최소가 되도록 각 공급처와 수급처 간의 수송량을 결정하는 문제이다. 현재 비선형 수송문제에 대한 다양한 해법들이 제안되고 있으며 그 중에서도 메타 휴리스틱을 이용한 해법들이 가장 활발히 연구되고 있다. 본 논문에서는 메타 휴리스틱 방법들중에 가장 널리 이용되고 있는 유전 알고리즘을 이용한 해법을 제시하고자 한다. 유전 알고리즘을 적용함에 있어서 제일 첫 관문은 해의 유전자표현을 어떻게 나타낼 것인가이다. 본 논문에서는 수송문제의 해를 걸침나무로 표현할 수 있다는 점 에 착안하여 다양한 트리 표현법을 수송문제에 적용해 보고 수치 실험을 통해 그 성능에 대한 비교 연구를 한다.
본 논문에서는 비선형 역학 시스템에서 복합적 지능 알고리즘을 이용하여 시스템의 제어 성능을 개선시키는 방법에 대하여 논의하였다. 기존의 비선형 제어를 위한 뉴럴 네트워크 및 유전자 알고리즘은 학습이 종료된 후에 고정된 상태에서는 훌륭한 제어를 보여주지만, 환경 변화와 같은 변이 인자가 발생되면 제어가 제대로 되지 않으며 재학습을 해야만 한다. 이때 재학습에 드는 시간이 많이 걸리는 문제점이 있다. 제안하는 시스템에서는 변이 인자가 발생되었을 때의 상황을 항원으로 하는 면역 시스템을 기존 제어시스템에 추가하여 사용함으로써 보다 안정적이며 빠른 제어 수행이 가능함을 보일 것이다. 또한 기존에 하드웨어로 구성하기 어려웠던 유전 알고리즘을 하드웨어로 구성하기 쉽도록 유전 인자를 메모리 주소로 하는 알고리즘을 만들게 되었다.
기호적 회귀분석 (Symbolic Regression)은 회귀분석에서 주어진 데이터에 대하여 종속변수와 독립변수들 사이의 관계를 설명할 수 있는 함수를 직접 생성하는 분석방법으로서 Genetic Programming 이 본 분야의 연구에 가장 선도적으로 적용되고 있으며, 고정된 모델로부터 매개변수들의 최적화를 추구하는 다른 회귀분석 알고리즘들에 비하여 해석이 가능한 모델을 직접 도출할 수 있다는 장점을 갖는다. 본 연구에서는 Coarse grained 병렬 모델에 기반한 Parellel Genetic Programming 을 이용한 symbolic regression 알고리즘을 제시하고 제시된 알고리즘을 PMLB 데이타에 적용하여 해당 알고리즘의 효용성을 분석하고자 한다.
본 논문은 최적 탐색 알고리즘인 유전자 알고리즘을 이용하여 다항식 뉴럴네트워크(Polynomial Neural Networks : PNN)의 최적 설계가 그 목적이다. 기존의 다항식 뉴럴네트워크는 확장된 GMDH(Group Method of Data Handling) 방법에 기반을 두며, 네트워크의 성장과정을 통하여 각 층의 다항식뉴런(혹은 노드)에서 고정된 (설계자에 의해 미리 선택된) 노드 입력들의 수뿐만 아니라 다항식 차수(1차, 2차, 그리고 수정된 2차식)를 이용하였다. 더구나, 그 방법은 학습을 통해 생성된 PNN이 최적 네트워크 구조를 가진다는 것을 보증하지 못한다. 그러나, 제안된 GA-based PW 모델은 다음의 파라미터들- 즉 입력변수의 수, 입력변수, 및 다항식 차수-을 유전자 알고리즘을 이용하여 선택 동조함으로써 그 구조를 구조적으로 더 최적화된 네트워크가 되도록 하고, 기존의 PNN보다 훨씬 더 유연하고, 선호된 뉴럴 네트워크가 되도록 한다. 하중계수를 가진 합성성능지수가 그 모델의 근사화 및 일반화(예측) 능력 사이의 상호 균형을 얻기 위해 제안된다. GA-based PNN의 성능을 평가하기 위해 그 모델은 가스 터빈발전소의 NOx 배출 공정 데이터로 실험된다. 비교해석은 제안된 GA-based PNN이 앞서 나타난 다른 지능모델보다 더 우수한 예측능력뿐만 아니라 높은 정확성을 가진 모델임을 보인다.
유전자 프로그래밍은 고정적인 구조가 아닌 가변 길이의 트리 구조를 가지고 있어서 여러 세대를 통하여 다양한 개체들을 만들어 낸다. 이러한 특징은 위원회 머신(committee machines)을 구축하는데 있어서 자연스럽고 또한 효과적인 알고리즘일 수 있다.하지만 해결해야 할 요소 중 하나는 다수의 개체들에서 결합할 개체의 선택과 개체의 수를 결정하기 위한 방법이다. 본 논문에서는 효과적인 개체들의 결합이 되기 위한 새로운 탐색방법을 소개한다. 이 방법은 확률적인 진화 탐색을 바탕으로 하고 있다. 제안된 방법을 여러 가지 분류 문제에 적용하였으며 실험을 통하여 탐색의 특성과 일반화 성능을 분석하였다.
본 논문에서는 유전자 알고리즘에 기반을 둔 자기구성 다항식 뉴럴네트워크(Self-Organizing Polynomial Neural Networks: SOPNN)의 새로운 구조를 제안하고, 포괄적인 설계 방법론을 토의한다. 기존의 자기구성 다항식 뉴럴 네트워크는 확장된 GMDH 방법에 기반을 두며, 네트워크의 성장과정을 통하여 각 충의 다항식 뉴런에서 고정된 노드 입력들의 수 뿐만 아니라 다항식 차수(1차, 2차, 그리고 수정된 2차식)를 이용하였다. 더구나, 그 방법은 학습을 통해 생성된 SOPNN이 최적 네트워크 구조를 가진다는 것을 보증하지 못한다. 그러나, 제안된 GA 기반 SOPNN은 그 구조를 구조적으로 더 최적화된 네트워크가 되도록 하고, 기존의 SOPNN보다 훨씬 더 유연하고, 선호된 뉴럴 네트워크가 되도록 한다. 구조적으로 더 최적화된 SOPNN을 생성하기 위해, SOPNN의 각 단계에서의 GA기반 설계 절차는 SOPNN내에서 이용할 수 있는 다음의 최적 파라미터들- 즉 입력변수의 수, 입력변수, 및 다항식 차수-을 가진 선호된 노드들의 선택으로 이끈다. 하중계수를 가진 합성성능지수가 그 모델의 근사화 및 일반화(예측) 능력 사이의 상호 균형을 얻기 위해 제안된다. 상세 설계 절차가 상세히 토의된다.
본 연구의 목적은 매 주기마다 교차로에 출입하는 차량의 도착률을 근거로 다음 주기의 대기차량 길이와 평균지체도를 예측하여 대기차량길이와 평균지체도를 최소화하는 이중목적 변동주기 기반의 동적 신호시간 결정모형을 개발하고 유전자 알고리즘을 이용하여 신호 최적화 모형을 구축하는데 있다. 본 논문에 적용된 주기변동기반 시스템은 기존의 고정주기, 고정 현시값을 적용해서는 실제 현장에서 교통상황의 변화에 적응하기 어렵기 때문에 매 주기마다 교통수요에 근거하여 주기길이와 현시길이를 조정하여 교차로 교통신호운영을 최적화 하는 것이다. 또한 목적함수 값으로 평균지체도와 평균대기차량을 동시에 적용함으로써 교차로 막힘이나 타 교차로의 신호운영에 악영향을 미치치 않으면서 최적의 신호운영을 가능하게 하는 것이다. 본 모형의 적용결과 비포화상태나 포화상태의 경우 모두 TRANSYT-7F나 PASSER-II보다는 동적으로 신호를 계산하는 본 모형이 대기차량수와 통과차량수, 지체도에 있어서 더 좋은 결과를 나타내었다. 그리고 이중목적함수를 적용한 결과 두 가지 목적함수값에서 서로 상쇄(trade-off)가 되며 양자를 모두 고려할 수 있는 현시길이와 주기길이를 찾을 수 있다는 것을 보여주었다. 본 연구결과 지능형 교통체계로서 실시간 신호최적화에 유용하게 적용될 수 있는 첨단교통신호 모형으로 주기변동기반 및 다중목적 신호최적화모형의 적용 가능성을 보여준 것으로 판단된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.