• 제목/요약/키워드: 유의어

검색결과 466건 처리시간 0.032초

정보 검색을 위한 동의어/유의어 사전 구축 (A Synonym Dictionary Construction for Information Retrieval)

  • 이태우;서영훈
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2003년도 제15회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.208-213
    • /
    • 2003
  • 본 논문에서는 많은 정보로부터 의미 있는 정보를 추출하기 위해 사용되는 정보 검색 시스템에서 이용이 가능한 동의어/유의어 사전을 구축하고 구축된 정보의 평가를 수행하였다. 사용한 자원으로는 미리 구축된 한-영 사전과 영-한사전을 이용하였다. 이들의 사용으로 다른 동의어사전과 달리 보다 많은 유의어 정보를 포함하는 이익을 얻었다. 본 논문의 시스템은 사전을 구축하기 위해 기본 자원을 이용하여 동의어/유의어 후보 목록들을 획득하고, 획득된 정보를 바탕으로 후보 목록의 빈도수와 사전의 위치 정보, 마지막으로 입력 명사 정보를 이용하여 동의어/유의어를 확정한다. 작성된 동의어/유의어사전은 한-영사전에 수록된 한국어 명사 64,630개를 대상으로 하였다. 작성된 사전을 문서 필터링 시스템에 추가하여 적용 전보다 성능이 향상됨을 확인하였다. 또한 질의 색인어 확장에 이용하여 보다 정답을 추출하는데 추가적으로 확장된 유의어 정보가 정답을 추출하는데 유용하게 사용됨을 확인하였다.

  • PDF

유의어 사전 기반 환경기술 검색 시스템 설계 (Design of environmental technology search system using synonym dictionary)

  • ;;구영현;유성준
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2020년도 하계학술대회
    • /
    • pp.582-586
    • /
    • 2020
  • 국가기후기술정보시스템은 국내 환경기술과 국외의 수요기술 정보를 제공하는 검색 시스템이다. 그러나 기존의 시스템은 유사한 뜻을 가진 단일 단어와 복수 단어들을 모두 식별하지 못하기에 유의어를 입력했을 경우 검색 결과가 다르다. 이런 문제점을 해결하기 위해 본 연구에서는 유의어 사전을 기반으로한 환경기술 검색 시스템을 제안한다. 이 시스템은 Word2vec 모델과 HDBSCAN(Hierarchical Density-Based Spatial Clustering of Application with Noise) 알고리즘을 이용해 유의어 사전을 구축한다. Word2vec 모델을 이용해 한국어와 영어 위키백과 코퍼스에 대해 형태소 분석을 진행한 후 단일 단어와 복수 단어를 포함한 단어를 추출하고 벡터화를 진행한다. 그 다음 HDBSCAN 알고리즘을 이용해 벡터화된 단어를 군집화 해주고 유의어를 추출한다. 기존의 Word2vec 모델이 모든 단어 간의 거리를 계산하고 유의어를 추출하는 과정과 대비하면 시간이 단축되는 역할을 한다. 추출한 유의어를 통합해 유의어 사전을 구축한다. 국가기후기술정보시스템에서 제공하는 국내외 기술정보, 기술정보 키워드와 구축한 유의어 사전을 Multi-filter를 제공하는 Elasticsearch에 적용해 최종적으로 유의어를 식별할 수 있는 환경기술 검색 시스템을 제안한다.

  • PDF

Ontofitting: 의미 표현을 위한 벡터 조정 (Ontofitting: Specialization of Word Vectors for Semantic Representation)

  • 오진영;차정원
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2018년도 제30회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.537-540
    • /
    • 2018
  • 우리는 단어 임베딩에 외부지식을 내재할 수 있는 Ontofitting 방법을 제안한다. 이 방법은 retrofitting의한 방법으로 유의어, 반의어, 상위어, 하위어 정보를 단어 임베딩에 내재할 수 있다. 유의어와 반의어 정보를 내재하기 위해서 벡터의 각 유사도를 사용하였고 상하위어 정보를 내재하기 위해서 벡터의 길이 정보를 사용하였다. 유의어 사이에는 작은 각도를 가지고 반의어 사이에는 큰 각도를 가지게 된다. 하위어는 상위어보다 상대적으로 작은 길이를 가지게 된다. SimLex와 HyperLex로 실험하여 효과와 안정성을 검증하였다. 의미정보를 내재한 임베딩을 사용할 수 있다면 QA, 대화 등 응용에서 보다 좋은 성능을 보일 수 있을 것이다.

  • PDF

동의어와 유의어 개념에 기반 한 키워드 추출기의 설계 및 구현 (Design and Implementation of Keyword Extractor based on Synonyms and Related Terms)

  • 박은석;박현진;이상곤
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2007년도 한국컴퓨터종합학술대회논문집 Vol.34 No.1 (C)
    • /
    • pp.163-166
    • /
    • 2007
  • 인간은 문서를 읽고 그 내용을 머릿속에서 개념적으로 정리하여 몇 개의 명사를 이용하여 키워드로 인지한다. 본 논문은 이러한 점에 착안하여 문서를 대표하는 키워드를 추출하는 시스템을 설계하고 구현하였다. 본 논문에서는 단어의 개별적인 개념 정보를 동의어와 유의어 사전을 통해 주요 개념어를 추출하고, 추출된 개념어들 사이의 공기 관계를 계산하여 키워드로써의 중요도를 계산하고자 한다. 이를 통해 문서를 대표할 수 있는 키워드 후보를 생성하는 생성 규칙을 자동화하고 문서를 잘 대표할 수 있는 키워드 추출기를 제안하였다.

  • PDF

의미 커널과 워드넷을 이용한 주관식 문제 채점 시스템의 설계 및 구현 (Design and Implementation of Short-Essay Marking System by Using Semantic Kernel and WordNet)

  • 조우진;추승우;오정석;김한샘;김유섭;이재영
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2005년도 춘계학술발표대회
    • /
    • pp.1027-1030
    • /
    • 2005
  • 기존 의미커널을 적용한 주관식 채점 시스템은 여러 답안과 말뭉치에서 추출한 색인어들과의 상관관계를 벡터방식으로 표현하여 자연어 처리에 대한 문제를 해결하려 하였다. 본 논문에서는 기존 시스템의 답안 및 색인어의 표현 한계로 인한 유사도 계산오차 가능성에 대한 문제를 해결하고자 시소러스를 이용한 임의 추출 방식의 답안 확장을 적용하였다. 서술형 주관식 평가에서는 문장의 문맥보다는 사용된 어휘에 채점가중치가 높다는 점을 착안, 출제자와 수험자 모두의 답안을 동의어, 유의어 그룹으로 확장하여 채점 성능을 향상시키려 하였다. 우선 두 답안을 형태소 분석기를 이용해 색인어를 추출한 후 워드넷을 이용하여 동의어, 유의어 그룹으로 확장한다. 이들을 말뭉치 색인을 이용하여 단어들 간 상관관계를 측정하기 위한 벡터로 구성하고 의미 커널을 적용하여 정답 유사도를 계산하였다. 출제자의 채점결과와 각 모델의 채점 점수의 상관계수 계산 결과 ELSA 모델이 가장 높은 유사도를 나타내었다..

  • PDF

문서 확장을 이용한 표제어 검색시스템 (Headword Finding System Using Document Expansion)

  • 김재훈;김형철
    • 정보관리연구
    • /
    • 제42권4호
    • /
    • pp.137-154
    • /
    • 2011
  • 표제어 검색시스템은 뜻풀이를 질의로 간주하는 정보검색 시스템이다. 이러한 시스템을 구축하기 위한 가장 간단한 방법으로 사전의 표제어 뜻풀이(사전 뜻풀이)를 문서로 간주하는 정보검색 시스템을 구축하는 것이다. 이 문서의 길이가 너무 짧아 사용자 질의(사용자 뜻풀이)에 대한 적절한 표제어를 검색하기 어렵다. 이 문제를 완화하기 위해서 본 논문에서는 정보검색에서 사용되는 질의 확장 개념을 문서 확장에 적용한다. 본 논문에서는 문서 확장 방법으로는 뜻풀이 확장과 유의어 확장을 사용한다. 뜻풀이 확장은 주어진 단어의 사전 뜻풀이에 속하는 단어의 뜻풀이를 문서에 포함시키는 방법이고, 유의어 확장은 무자질 군집화 알고리즘을 통해서 유의어를 찾고, 찾아진 유의어를 문서에 포함시키는 방법이다. 제안된 표제어 검색시스템은 사전 뜻풀이 그 자체를 입력으로 할 때, 16-포함률이 거의 100%에 달하였다. 또한 사용자 뜻풀이를 입력으로 할 때, 20-포함률이 66.9%였다. 사용자 뜻풀이가 단어의 의미를 충분히 전달할 수 없는 것으로 관찰되었으며 앞으로 정확하고 객관적인 평가를 위해서 평가 집합에 대한 연구가 추가적으로 필요한 실정이다.

시소러스를 이용한 문서 자동 요약 (Automatic Text Summarization Using Thesaurus)

  • 이창범;박혁로
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 봄 학술발표논문집 Vol.28 No.1 (B)
    • /
    • pp.352-354
    • /
    • 2001
  • 문서 자동요약은 입력된 문서에 대해 컴퓨터가 자동으로 요약을 생성하는 과정을 의미한다. 즉, 컴퓨터가 문서의 기본적인 내용을 유지하면서 문서의 복잡도 즉 문서의 길이를 줄이는 작업이다. 효율적인 정보 접근을 제공함과 동시에 정보 과적재를 해결하기 하기 위한 하나의 방법으로 문서 자동요약에 관한 연구가 활발히 진행되고 있다. 본 논문에서는 의미기반 정보검색용 시소러스(thesaurus)를 이용한 문서 자동요약을 제안한다. 제안한 방법에서는 단어간의 연관 관계 즉, 동의어, 유의어, 상위어, 하위어 관계를 문서 요약에 이용한다. 크게 연관 사슬 형성 단계, 중심 문장 추출 단계, 요약 생성 단계의 새단계로 나누어 요약을 생성한다. 수동 요약된 신문기사를 대상으로 평가한 결과 평균 66%가 일치하였다.

  • PDF

군집 주제의 유의어와 유사도를 이용한 문서군집 향상 방법 (Enhancing Document Clustering Method using Synonym of Cluster Topic and Similarity)

  • 박선;김철원
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2011년도 춘계학술발표대회
    • /
    • pp.1538-1541
    • /
    • 2011
  • 본 논문은 군집 주제의 유의어와 유사도를 이용하여 문서군집의 성능을 향상시키는 방법을 제안한다. 제안된 방법은 비음수행렬분해의 의미특징을 이용하여 군집 주제(topic)의 용어들을 선택함으로서 문서 군집 집합의 내부구조를 잘 표현할 수 있으며, 군집 주제의 용어들에 워드넷의 유의어를 사용하여서 확장함으로써 문서를 용어집합(bag-of-words)으로 표현하는 문제를 해결할 수 있다. 또한 확장된 군집 주제의 용어와 문서집합에 코사인 유사도를 이용하여서 군집의 주제에 적합한 문서를 잘 군집하여서 성능을 높일 수 있다. 실험결과 제안방법을 적용한 문서군집방법이 다른 문서군집 방법에 비하여 좋은 성능을 보인다.

워드 임베딩과 유의어를 활용한 단어 의미 범주 할당 (Assignment Semantic Category of a Word using Word Embedding and Synonyms)

  • 박다솔;차정원
    • 정보과학회 논문지
    • /
    • 제44권9호
    • /
    • pp.946-953
    • /
    • 2017
  • 의미역 결정은 서술어와 논항들 사이의 의미 관계를 결정하는 문제이다. 의미역 결정을 위해 의미 논항 역할 정보와 의미 범주 정보를 사용해야 한다. 세종 전자사전은 의미역을 결정하는데 사용한 격틀 정보가 포함되어 있다. 본 논문에서는 워드 임베딩과 유의어를 활용하여 세종 전자사전을 확장하는 방법을 제시한다. 연관 단어가 유사한 벡터 표현을 갖도록 하기 위해 유의어 사전의 정보를 사용하여 재구성된 벡터를 생성한다. 기존의 워드 임베딩과 재구성된 벡터를 사용하여 동일한 실험을 진행한다. 워드 임베딩을 이용한 벡터로 단어의 세종 전자사전에 나타나지 않은 단어에 대해 의미 범주 할당의 시스템 성능은 32.19%이고, 확장한 의미 범주 할당의 시스템 성능은 51.14%이다. 재구성된 벡터를 이용한 단어의 세종 전자사전에 나타나지 않은 단어에 대해 의미 범주 할당의 시스템 성능은 33.33%이고, 확장한 의미 범주 할당의 시스템 성능은 53.88%이다. 의미 범주가 할당되지 않은 새로운 단어에 대해서 논문에서 제안한 방법으로 의미 범주를 할당하여 세종 전자사전의 의미 범주 단어 확장에 대해 도움이 됨을 증명하였다.

대화 말뭉치 구축을 위한 반자동 의미표지 태깅 시스템 (A Semi-Automatic Semantic Mark Tagging System for Building Dialogue Corpus)

  • 박준혁;이성욱;임윤섭;최종석
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제8권5호
    • /
    • pp.213-222
    • /
    • 2019
  • 지능형 음성 대화 인터페이스 구현에 있어 핵심어의 의미표지는 사용자 의도 파악을 위한 중요한 요소이다. 대화시스템은 사용자 발화의 의도를 파악하기 위해 핵심어와 그 의미표지를 이용하여 발화의 의도를 결정한다. 하나의 핵심어는 여러 개의 의미표지를 가질 수 있는 중의성을 지닌다. 이러한 중의성을 지닌 핵심어를 사용자의 의도와 일치하는 의미표지로 결정하는 것은 단어 의미 분별 문제와 유사하다. 우리는 전사된 대화 말뭉치의 약 23%를 수동으로 의미를 부착하여 핵심어에 대한 의미표지 사전, 유의어 사전, 문맥벡터 사전을 먼저 구축한 후, 나머지 77% 대화 말뭉치에 존재하는 핵심어의 의미를 자동으로 부착한다. 중의성을 가진 핵심어는 문맥벡터 사전으로부터 문맥 벡터 유사도를 계산하여 의미를 결정한다. 핵심어가 미등록어인 경우에는 유의어 사전을 이용하여 가장 유사한 핵심어를 찾아 그 핵심어의 의미를 부착한다. 중의성을 가진 고빈도 핵심어 3개와 저빈도 핵심어 3개를 말뭉치에서 선정하여 제안 시스템의 성능을 평가하였다. 실험결과, 수동으로 구축한 말뭉치를 사용하였을 때 약 54.4%의 정확도를 얻었고, 반자동으로 확장한 말뭉치를 사용하였을 때 약 50.0%의 정확도를 얻었다.