• Title/Summary/Keyword: 유의어

Search Result 466, Processing Time 0.026 seconds

A Synonym Dictionary Construction for Information Retrieval (정보 검색을 위한 동의어/유의어 사전 구축)

  • Lee, Tae-Woo;Seo, Young-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2003.10d
    • /
    • pp.208-213
    • /
    • 2003
  • 본 논문에서는 많은 정보로부터 의미 있는 정보를 추출하기 위해 사용되는 정보 검색 시스템에서 이용이 가능한 동의어/유의어 사전을 구축하고 구축된 정보의 평가를 수행하였다. 사용한 자원으로는 미리 구축된 한-영 사전과 영-한사전을 이용하였다. 이들의 사용으로 다른 동의어사전과 달리 보다 많은 유의어 정보를 포함하는 이익을 얻었다. 본 논문의 시스템은 사전을 구축하기 위해 기본 자원을 이용하여 동의어/유의어 후보 목록들을 획득하고, 획득된 정보를 바탕으로 후보 목록의 빈도수와 사전의 위치 정보, 마지막으로 입력 명사 정보를 이용하여 동의어/유의어를 확정한다. 작성된 동의어/유의어사전은 한-영사전에 수록된 한국어 명사 64,630개를 대상으로 하였다. 작성된 사전을 문서 필터링 시스템에 추가하여 적용 전보다 성능이 향상됨을 확인하였다. 또한 질의 색인어 확장에 이용하여 보다 정답을 추출하는데 추가적으로 확장된 유의어 정보가 정답을 추출하는데 유용하게 사용됨을 확인하였다.

  • PDF

Design of environmental technology search system using synonym dictionary (유의어 사전 기반 환경기술 검색 시스템 설계)

  • XIANGHUA, PIAO;HELIN, YIN;Gu, Yeong Hyeon;Yoo, Seong Joon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.582-586
    • /
    • 2020
  • 국가기후기술정보시스템은 국내 환경기술과 국외의 수요기술 정보를 제공하는 검색 시스템이다. 그러나 기존의 시스템은 유사한 뜻을 가진 단일 단어와 복수 단어들을 모두 식별하지 못하기에 유의어를 입력했을 경우 검색 결과가 다르다. 이런 문제점을 해결하기 위해 본 연구에서는 유의어 사전을 기반으로한 환경기술 검색 시스템을 제안한다. 이 시스템은 Word2vec 모델과 HDBSCAN(Hierarchical Density-Based Spatial Clustering of Application with Noise) 알고리즘을 이용해 유의어 사전을 구축한다. Word2vec 모델을 이용해 한국어와 영어 위키백과 코퍼스에 대해 형태소 분석을 진행한 후 단일 단어와 복수 단어를 포함한 단어를 추출하고 벡터화를 진행한다. 그 다음 HDBSCAN 알고리즘을 이용해 벡터화된 단어를 군집화 해주고 유의어를 추출한다. 기존의 Word2vec 모델이 모든 단어 간의 거리를 계산하고 유의어를 추출하는 과정과 대비하면 시간이 단축되는 역할을 한다. 추출한 유의어를 통합해 유의어 사전을 구축한다. 국가기후기술정보시스템에서 제공하는 국내외 기술정보, 기술정보 키워드와 구축한 유의어 사전을 Multi-filter를 제공하는 Elasticsearch에 적용해 최종적으로 유의어를 식별할 수 있는 환경기술 검색 시스템을 제안한다.

  • PDF

Ontofitting: Specialization of Word Vectors for Semantic Representation (Ontofitting: 의미 표현을 위한 벡터 조정)

  • Oh, Jinyoung;Cha, Jeong-Won
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.537-540
    • /
    • 2018
  • 우리는 단어 임베딩에 외부지식을 내재할 수 있는 Ontofitting 방법을 제안한다. 이 방법은 retrofitting의한 방법으로 유의어, 반의어, 상위어, 하위어 정보를 단어 임베딩에 내재할 수 있다. 유의어와 반의어 정보를 내재하기 위해서 벡터의 각 유사도를 사용하였고 상하위어 정보를 내재하기 위해서 벡터의 길이 정보를 사용하였다. 유의어 사이에는 작은 각도를 가지고 반의어 사이에는 큰 각도를 가지게 된다. 하위어는 상위어보다 상대적으로 작은 길이를 가지게 된다. SimLex와 HyperLex로 실험하여 효과와 안정성을 검증하였다. 의미정보를 내재한 임베딩을 사용할 수 있다면 QA, 대화 등 응용에서 보다 좋은 성능을 보일 수 있을 것이다.

  • PDF

Design and Implementation of Keyword Extractor based on Synonyms and Related Terms (동의어와 유의어 개념에 기반 한 키워드 추출기의 설계 및 구현)

  • Park, Eun-Suk;Park, Hyun-Jin;Lee, Samuel Sang-Kon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.06c
    • /
    • pp.163-166
    • /
    • 2007
  • 인간은 문서를 읽고 그 내용을 머릿속에서 개념적으로 정리하여 몇 개의 명사를 이용하여 키워드로 인지한다. 본 논문은 이러한 점에 착안하여 문서를 대표하는 키워드를 추출하는 시스템을 설계하고 구현하였다. 본 논문에서는 단어의 개별적인 개념 정보를 동의어와 유의어 사전을 통해 주요 개념어를 추출하고, 추출된 개념어들 사이의 공기 관계를 계산하여 키워드로써의 중요도를 계산하고자 한다. 이를 통해 문서를 대표할 수 있는 키워드 후보를 생성하는 생성 규칙을 자동화하고 문서를 잘 대표할 수 있는 키워드 추출기를 제안하였다.

  • PDF

Design and Implementation of Short-Essay Marking System by Using Semantic Kernel and WordNet (의미 커널과 워드넷을 이용한 주관식 문제 채점 시스템의 설계 및 구현)

  • Cho, Woo-Jin;Chu, Seung-Woo;O, Jeong-Seok;Kim, Han-Saem;Kim, Yu-Seop;Lee, Jae-Young
    • Annual Conference of KIPS
    • /
    • 2005.05a
    • /
    • pp.1027-1030
    • /
    • 2005
  • 기존 의미커널을 적용한 주관식 채점 시스템은 여러 답안과 말뭉치에서 추출한 색인어들과의 상관관계를 벡터방식으로 표현하여 자연어 처리에 대한 문제를 해결하려 하였다. 본 논문에서는 기존 시스템의 답안 및 색인어의 표현 한계로 인한 유사도 계산오차 가능성에 대한 문제를 해결하고자 시소러스를 이용한 임의 추출 방식의 답안 확장을 적용하였다. 서술형 주관식 평가에서는 문장의 문맥보다는 사용된 어휘에 채점가중치가 높다는 점을 착안, 출제자와 수험자 모두의 답안을 동의어, 유의어 그룹으로 확장하여 채점 성능을 향상시키려 하였다. 우선 두 답안을 형태소 분석기를 이용해 색인어를 추출한 후 워드넷을 이용하여 동의어, 유의어 그룹으로 확장한다. 이들을 말뭉치 색인을 이용하여 단어들 간 상관관계를 측정하기 위한 벡터로 구성하고 의미 커널을 적용하여 정답 유사도를 계산하였다. 출제자의 채점결과와 각 모델의 채점 점수의 상관계수 계산 결과 ELSA 모델이 가장 높은 유사도를 나타내었다..

  • PDF

Headword Finding System Using Document Expansion (문서 확장을 이용한 표제어 검색시스템)

  • Kim, Jae-Hoon;Kim, Hyung-Chul
    • Journal of Information Management
    • /
    • v.42 no.4
    • /
    • pp.137-154
    • /
    • 2011
  • A headword finding system is defined as an information retrieval system using a word gloss as a query. We use the gloss as a document in order to implement such a system. Generally the gloss is very short in length and then makes very difficult to find the most proper headword for a given query. To alleviate this problem, we expand the document using the concept of query expansion in information retrieval. In this paper, we use 2 document expansion methods : gloss expansion and similar word expansion. The former is the process of inserting glosses of words, which include in the document, into a seed document. The latter is also the process of inserting similar words into a seed document. We use a featureless clustering algorithm for getting the similar words. The performance (r-inclusion rate) amounts to almost 100% when the queries are word glosses and r is 16, and to 66.9% when the queries are written in person by users. Through several experiments, we have observed that the document expansions are very useful for the headword finding system. In the future, new measures including the r-inclusion rate of our proposed measure are required for performance evaluation of headword finding systems and new evaluation sets are also needed for objective assessment.

Automatic Text Summarization Using Thesaurus (시소러스를 이용한 문서 자동 요약)

  • 이창범;박혁로
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.352-354
    • /
    • 2001
  • 문서 자동요약은 입력된 문서에 대해 컴퓨터가 자동으로 요약을 생성하는 과정을 의미한다. 즉, 컴퓨터가 문서의 기본적인 내용을 유지하면서 문서의 복잡도 즉 문서의 길이를 줄이는 작업이다. 효율적인 정보 접근을 제공함과 동시에 정보 과적재를 해결하기 하기 위한 하나의 방법으로 문서 자동요약에 관한 연구가 활발히 진행되고 있다. 본 논문에서는 의미기반 정보검색용 시소러스(thesaurus)를 이용한 문서 자동요약을 제안한다. 제안한 방법에서는 단어간의 연관 관계 즉, 동의어, 유의어, 상위어, 하위어 관계를 문서 요약에 이용한다. 크게 연관 사슬 형성 단계, 중심 문장 추출 단계, 요약 생성 단계의 새단계로 나누어 요약을 생성한다. 수동 요약된 신문기사를 대상으로 평가한 결과 평균 66%가 일치하였다.

  • PDF

Enhancing Document Clustering Method using Synonym of Cluster Topic and Similarity (군집 주제의 유의어와 유사도를 이용한 문서군집 향상 방법)

  • Park, Sun;Kim, Chul-Won
    • Annual Conference of KIPS
    • /
    • 2011.04a
    • /
    • pp.1538-1541
    • /
    • 2011
  • 본 논문은 군집 주제의 유의어와 유사도를 이용하여 문서군집의 성능을 향상시키는 방법을 제안한다. 제안된 방법은 비음수행렬분해의 의미특징을 이용하여 군집 주제(topic)의 용어들을 선택함으로서 문서 군집 집합의 내부구조를 잘 표현할 수 있으며, 군집 주제의 용어들에 워드넷의 유의어를 사용하여서 확장함으로써 문서를 용어집합(bag-of-words)으로 표현하는 문제를 해결할 수 있다. 또한 확장된 군집 주제의 용어와 문서집합에 코사인 유사도를 이용하여서 군집의 주제에 적합한 문서를 잘 군집하여서 성능을 높일 수 있다. 실험결과 제안방법을 적용한 문서군집방법이 다른 문서군집 방법에 비하여 좋은 성능을 보인다.

Assignment Semantic Category of a Word using Word Embedding and Synonyms (워드 임베딩과 유의어를 활용한 단어 의미 범주 할당)

  • Park, Da-Sol;Cha, Jeong-Won
    • Journal of KIISE
    • /
    • v.44 no.9
    • /
    • pp.946-953
    • /
    • 2017
  • Semantic Role Decision defines the semantic relationship between the predicate and the arguments in natural language processing (NLP) tasks. The semantic role information and semantic category information should be used to make Semantic Role Decisions. The Sejong Electronic Dictionary contains frame information that is used to determine the semantic roles. In this paper, we propose a method to extend the Sejong electronic dictionary using word embedding and synonyms. The same experiment is performed using existing word-embedding and retrofitting vectors. The system performance of the semantic category assignment is 32.19%, and the system performance of the extended semantic category assignment is 51.14% for words that do not appear in the Sejong electronic dictionary of the word using the word embedding. The system performance of the semantic category assignment is 33.33%, and the system performance of the extended semantic category assignment is 53.88% for words that do not appear in the Sejong electronic dictionary of the vector using retrofitting. We also prove it is helpful to extend the semantic category word of the Sejong electronic dictionary by assigning the semantic categories to new words that do not have assigned semantic categories.

A Semi-Automatic Semantic Mark Tagging System for Building Dialogue Corpus (대화 말뭉치 구축을 위한 반자동 의미표지 태깅 시스템)

  • Park, Junhyeok;Lee, Songwook;Lim, Yoonseob;Choi, Jongsuk
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.5
    • /
    • pp.213-222
    • /
    • 2019
  • Determining the meaning of a keyword in a speech dialogue system is an important technology for the future implementation of an intelligent speech dialogue interface. After extracting keywords to grasp intention from user's utterance, the intention of utterance is determined by using the semantic mark of keyword. One keyword can have several semantic marks, and we regard the task of attaching the correct semantic mark to the user's intentions on these keyword as a problem of word sense disambiguation. In this study, about 23% of all keywords in the corpus is manually tagged to build a semantic mark dictionary, a synonym dictionary, and a context vector dictionary, and then the remaining 77% of all keywords is automatically tagged. The semantic mark of a keyword is determined by calculating the context vector similarity from the context vector dictionary. For an unregistered keyword, the semantic mark of the most similar keyword is attached using a synonym dictionary. We compare the performance of the system with manually constructed training set and semi-automatically expanded training set by selecting 3 high-frequency keywords and 3 low-frequency keywords in the corpus. In experiments, we obtained accuracy of 54.4% with manually constructed training set and 50.0% with semi-automatically expanded training set.