• Title/Summary/Keyword: 유연 다물체 모델

Search Result 29, Processing Time 0.023 seconds

반디호 복합재 착륙장치의 착륙특성에 관한 해석

  • Choi, Sun-Woo;Park, Il-Kyung
    • Aerospace Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.15-20
    • /
    • 2005
  • Most of studies for the ground load and ground behavior of landing gear have been conducted with an assumption that the structure of landing gear was rigid body. The assumption of rigid body during design process results in many errors or discrepancy. High ground load occurs in 3 directions on the shock absorbing strut during landing. This ground load initiated high structural deformation. In this study, the flex-multi-body dynamics is applied to adapt flexible bodies, so the results of analysis can be described close to landing gears real behaviour.

  • PDF

Dynamic Analysis of A High Mobility Tracked Vehicle Using Compliant Track Link Model (유연성 궤도 모델을 사용한 고기동성 궤도차량의 동역학 해석)

  • 백운경;최진환;배대성
    • Journal of KSNVE
    • /
    • v.9 no.6
    • /
    • pp.1259-1266
    • /
    • 1999
  • The objective of this investigation is to develop a compliant track link model and apply this model to the multi-body dynamic analysis of high mobility tracked vehicles. Two major difficulties encountered in developing the compliant track models. The first one is that the integration step size must be kept small in order to maintain the numerical stability of the solution. This solution deals with high oscillatory signals resulting from the impulsive contact forces and stiff compliant elements to represent the joints between the track links. The second difficulty is due to the large number of the system equations of motion of the three dimensional multibody tracked vehicle model. This problem was sloved by decoupling the equations of motion of the chassis subsystem and the track subsystems. Recursive methods are used to obtain a minimum set of equations for the chassis subsystem. Several simulation scenarios were tested for the high mobility tracked vehicle including accelaeration, high speed cruising, braking, and turning motion in order to demonstrate the effectiveness and validity of the methods proposed in this investigation.

  • PDF

Analysis of Durability of Vehicle Chassis Part in Virtual Test Lab (가상내구시험을 통한 차량 샤시 부품 내구성 예측에 관한 연구)

  • Cho, ByungKwan;Ha, Jungho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.6
    • /
    • pp.747-752
    • /
    • 2013
  • Recently, virtual test laboratory techniques have been widely used to reduce vehicle development costs and time. In this study, a virtual durability test process using multibody dynamics simulation and fatigue simulation is proposed. The flexible multibody model of the front half of a car suspension is solved using road loads that are measured from durability test courses such as a Belgian road. To verify the simulation results, the measured loads of components and simulation results are collated.

Shock and vibration analysis of a tractor-trailer type vehicle system with air suspension (공기 현가 장치를 장착한 트랙터-트레일러형 차량 시스템의 충격진동 해석)

  • 김종길;하태완
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.15-22
    • /
    • 2000
  • Shock and vibration characteristics of a tractor-trailer type vehicle system with air suspension and air coupler running on a single bump road are investigated. The vehicle system is modelled and solved to two types of models, i.e. rigid-multi-body and flexible-multi-body model, by ADAMS and NASTRAN software. And the shock impulse is given by a single bump model on the road. When the analysis results of the rigid-multi-body model is compared with those of the flexible-multi-body model, it is revealed that the vibration and accelerations of the latter model are more repetitive and larger than the former.

  • PDF

Modeling of the Maglev Vehicle Running over the Elevated Guideway Using Flexible Multibody Dynamics (유연다물체 동역학을 이용한 자기부상열차 동역학 모델링 연구)

  • Lee, Jong-Min;Kim, Young-Joong;Kim, Kuk-Jin;Kim, Dong-Sung;Kim, Sook-Hee;Han, Hyung-Suk
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.6 s.37
    • /
    • pp.792-797
    • /
    • 2006
  • In general, the Maglev vehicle is ran over the elevated guideway consisted of steel or concrete structure. Since the running behaviour of the vehicle is affected by the flexibility of the guideway, the consideration of the flexibility of guideway is needed for evaluation of dynamics of both the vehicle and guideway. A new technique based on flexible multibody dynamics is proposed to model the Maglev vehicle, levitation controller, and guideway into a coupled model. To verify the technique, an urban Maglev vehicle is analyzed using the technique and discussions are carried out.

Flexible Multibody Dynamic Analysis of the Deployable Composite Reflector Antenna (전개형 복합재 반사판 안테나의 유연 다물체 동역학 해석)

  • Lim, Yoon-Ji;Oh, Young-Eun;Roh, Jin-Ho;Lee, Soo-Yong;Jung, Hwa-Young;Lee, Jae-Eun;Kang, Deok-Soo;Yun, Ji-Hyeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.10
    • /
    • pp.705-711
    • /
    • 2019
  • Dynamic behaviors of the deployable composite reflector antenna are numerically and experimentally investigated. Equations of the motion are formalized using Kane's equation by considering multibody systems with two degrees of freedom such as folding and twisting angles. To interpret structural deformations of the reflector antenna, the composite reflector is modeled using a beam model with the FSDT(First-order Shear Deformation Theory). To determine design parameters such as a torsional spring stiffness and a damping coefficient depending on deployment duration, an inverted pendulum model is simply applied. Based on the determined parameters, dynamic characteristics of the deployable reflector are investigated. In addition, its results are verified and compared through deployment tests using a gravity compensation device.

Modeling and Analysis of Interactions Between A Satellite and Variable-Speed Control Moment Gyros (인공위성과 가변속 제어모멘트자이로의 상호작용 모델링 및 해석)

  • Jin, Jaehyun;Leeghim, Henzeh
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.1
    • /
    • pp.17-26
    • /
    • 2018
  • The interaction model between variable-speed control moment gyros and a satellite has been studied based on the multi-body dynamics. Using the interaction model, we could obtain data for the design of VCMG motors and the strength design of structure. The interaction effects of flexible modules such as solar panels were included. Flexible modes are excited by the satellite's maneuver, and these modes cause perturbations in the satellite attitude. We developed a simulation program by Modelica and verified the proposed model.

Development and Verification of a Dynamic Analysis Model for the Current-Collection Performance of High-Speed Trains Using the Absolute Nodal Coordinate Formulation (절대절점좌표를 이용한 고속철도 집전성능 동역학 해석 모델 개발 및 검증)

  • Lee, Jin-Hee;Park, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.3
    • /
    • pp.339-346
    • /
    • 2012
  • The pre-evaluation of the current-collection performance is an important issue for high-speed railway vehicles. In this paper, using flexible multibody dynamic analysis techniques, a simulation model of the dynamic interaction between the catenary and pantograph is developed. In the analysis model, the pantograph is modeled as a rigid body, and the catenary wire is developed using the absolute nodal coordinate formulation, which can analyze large deformable parts effectively. Moreover, for the representation of the dynamic interaction between these parts, their relative motions are constrained by a sliding joint. Using this analysis model, the contact force and loss of contact can be calculated for a given vehicle speed. The results are evaluated by EN 50318, which is the international standard with regard to analysis model validation. This analysis model may contribute to the evaluation of high-speed railway vehicles that are under development.

Flexible Multibody Dynamic Analysis of the Wiper System for Automotives (자동차 와이퍼 시스템의 유연 다물체 동역학 해석)

  • Jung, Sung-Pil;Park, Tae-Won;Cheong, Won-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.2
    • /
    • pp.175-181
    • /
    • 2010
  • This paper presents the dynamic analysis method for estimating the performance of flat-type blades in wiper systems. The blade has nonlinear characteristics since the rubber is a hyper-elastic material. Thus, modal coordinate and absolute nodal coordinate formulations were used to describe the dynamic characteristic of the blade. The blade was structurally analyzed to find the bending characteristics of the cross section of the blade. According to the analysis results, the blade section is divided into three deformation bodies: rigid, small, and large. For the small deformation body, the modal coordinate formulation is used, while the absolute nodal coordinate formulation is used for the large deformation body. To verify the dynamic analysis result, an experiment was performed. The simulation and experiment results were compared to verify the flexible multi-body dynamic model.

Lightweight Suspension Module Development for Electric Vehicle (전기 자동차용 경량화 서스펜션 모듈 개발)

  • Jung, Yoon-Sik;Shin, Heon-Seop;Rhim, Sungsoo;Choi, Jin-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.8
    • /
    • pp.1015-1019
    • /
    • 2013
  • To improve the energy efficiency and ride quality of an electric vehicle, it is highly desirable to develop a lightweight suspension system with high travel ratio. Air suspension systems with a rubber tube are often considered optimal for such requirements. In this study, a new lightweight air suspension system with high travel ratio was developed for use in electric vehicles. Furthermore, an FE-based multi-flexible-body dynamics (MFBD) model of the suspension system was developed as a tool for improving the design of an actual suspension system. The MFBD model includes the FE modeling of the rubber tube module as well as other essential parts of the air suspension system. The system parameters for the model were obtained from various experiments. The validity of the developed MFBD model was shown through a comparison between the experimental results and the simulation results.