• Title/Summary/Keyword: 유연 다물체 동역학 시뮬레이션

Search Result 19, Processing Time 0.021 seconds

Stress Analysis of Tractor Front-End Loader against Impact Load Using Flexible Multi-Body Dynamic Simulation (유연 다물체 동역학 해석을 이용한 충격 하중에 따른 트랙터 프론트 로더의 응력 분석)

  • Shin, Chang-Seop;Kim, Beom-Soo;Han, Hyun-Woo;Chung, Woo-Jin;Cho, Seung-Je;Park, Young-Jun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.3
    • /
    • pp.26-32
    • /
    • 2019
  • This study was conducted to analyze the stresses by impact loads on front-end loaders attached to tractors using flexible multi-body dynamics. The model was designed and validated by comparing previous experimental data with the simulation data obtained in this study. Nine sets of conditions were designed using three weights (500, 300, and 100 kg) loaded inside a bucket and three heights (1700, 1350, and 1000 mm) of the bucket from ground level. A parametric study was carried out at five locations for two types of parts of a front-end loader. All the safety factors for the five locations under all conditions were calculated and were greater than 1. Thus, the designs of the front-end loaders were structurally safe. Based on this study, front-end loaders attached to tractors can be designed effectively in terms of cost and safety.

Analysis for the Driving Dynamic Characteristics of Large Scale Semi-Trailer Equipped with Swivel Axle and Hydropneumatic Suspension Unit (회전 차축 및 유기압 현가장치를 장착한 대용량 세미 트레일러의 주행 동특성 해석)

  • Ha, Taewan;Park, Jungsoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.196-209
    • /
    • 2022
  • Driving dynamic characteristics of semi-trailer loaded with precise equipments are very important to protect them from vibration, impact or other disturbances. In this paper, in order to identify the driving dynamic characteristics of the large scale semi-trailer equipped with swivel axle and hydropneumatic suspension unit, Dynamics Modeling & Simulation(M&S) were performed using general Dynamics Analysis Program(RecurDyn V9R2). The semi-trailer was modeled as two types - one is Multi Rigid Body Dynamics(MRBD) model, and the other Rigid-Flexible Body Dynamics(RFlex) one. The natural vibration mode and frequencies of semi-trailer body, acceleration of dummy-weight, pitch, roll and yaw of dummy-weight, swivel axle and hydropneumatic suspension cylinder support structure, and acting force of hydropneumatic suspensions etc. were obtained from the M&S. Additionally frequency analysis were performed using the data of behavior obtained from above M&S. Generally the quantitative results of RFlex are larger than them of MRBD in view of magnitude of the comparable parametric values.

Driving Dynamic Characteristics of Tractor-Trailer Type Transporter for Large Scale Precision Equipment (대형 정밀장비 탑재용 트랙터-트레일러형 차량의 주행 동특성)

  • Ha, Taewan;Oh, Sanghoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.687-696
    • /
    • 2019
  • To identify the driving dynamic characteristics of the Tractor-Trailer Type Transporter for mounting a large scale precision equipment, real vehicle driving tests on the 3 inch-bump-space-road were performed. And using general Dynamics Analysis Program - RecurDyn(V8R5), Dynamics M&S were carried out assuming the similar condition with real tests. Then the acceleration data obtained from real tests and M&S were analyzed and compared with each other in the part of root-mean-square-acceleration($g_{rms}$), peak-acceleration($g_{peak}$) and frequencies. In simple view of the $g_{rms}$ & $g_{peak}$, although the results of MRBD are more similar to ones of the real vehicle driving tests, but the results of RFlex have more information to get various useful dynamic characteristics.

Development of an Automation Library in Multi-Body Dynamics Program for Dynamic Structural Analysis of Block Lifting Process (블록의 리프팅 동적 구조해석을 위한 다물체 동역학 프로그램의 내장형 자동화 라이브러리 개발)

  • Jung, Da-un;Cha, Ju-Hwan;Song, Chang-Yong;Lee, Chung-Hyoung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.2
    • /
    • pp.135-143
    • /
    • 2016
  • In this study, an embedded system composed of equipment setting, block importing, scenario setting and output reporting is developed in multi-body dynamics program, ADAMS, for conducting dynamic structural analysis of block lifting process. First, equipment used for block lifting process is set in the simulation environment and the shapes and functions of two lifting beams, and six block loaders are provided as the equipment. Second, the modal analysis result of the lifting block is imported from the static structural analysis system, NASTRAN. Third, the lifting scenarios, such as hoisting, waiting, trolley moving, and wire connecting, are set in the system. Finally, output results in the forms of plots, texts and tables, are reported after the dynamic structural analysis. The test examples conducted in a shipyard are applied into the developed system in various condition and scenarios. The loads at the lug points, the stress contours, and the hot spot tables of the developed system are compared with the result of the static analysis system.

Simulation for Belt Transport System using Crowning Roller (Crowning 롤러를 이용한 벨트 이송 시스템의 시뮬레이션)

  • Lyu, Sang-Heon;Ihu, Yong-Seok;Choi, Yeon-Sun;Koo, J.C.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.676-679
    • /
    • 2006
  • The media transport in automatic office machines such as printers, ATMs, copying machines is achieved by a complicated belt system. The system generally uses a crowning roller and belt which has been well-known for its intrinsic belt centering advantage during its operation. Since the modern office machines require precise high operating speed, stabilization of media transporting system has been one of the important issues of the machine design. Even a minor defect of the belt or the roller in the transport system directly affects its operating stability. This paper delivers a simulation technique that combines a multi-body dynamics analysis routine and a FEM based flexible continuum modeling for the efficient simulation of the flexible media transport problems.

  • PDF

Simulation for Defect Diagnosis in Belt Transport System (벨트 이송 시스템의 결함 진단을 위한 시뮬레이션)

  • Lee, Nam-Hoon;Lyu, Sang-Heon;Ihn, Yong-Seok;Choi, Yeon-Sun;Koo, J.C.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.4 s.109
    • /
    • pp.366-371
    • /
    • 2006
  • As functional requirements of automatic office machines like printers, Automatic Tellex Machines(ATMs), copying machines are on a trend for the higher speed and precision, extensive technical advances are being developed and implemented in the industry. Media transport system is a device to convey a sheet of paper in ATMs and printers. The stability of media transport system is a matter of concern as their operating throughput rapidly increases. And defects of belts or rollers in a transport system directly affect the level of stability of the system. Therefore an automatic diagnostic system for predicting various defects is necessary for the stable operation of the media transport system. A simulation based on multi-body dynamics has been done for a feasibility study of a system design for the defect anticipation.

Modeling and Analysis of Interactions Between A Satellite and Variable-Speed Control Moment Gyros (인공위성과 가변속 제어모멘트자이로의 상호작용 모델링 및 해석)

  • Jin, Jaehyun;Leeghim, Henzeh
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.1
    • /
    • pp.17-26
    • /
    • 2018
  • The interaction model between variable-speed control moment gyros and a satellite has been studied based on the multi-body dynamics. Using the interaction model, we could obtain data for the design of VCMG motors and the strength design of structure. The interaction effects of flexible modules such as solar panels were included. Flexible modes are excited by the satellite's maneuver, and these modes cause perturbations in the satellite attitude. We developed a simulation program by Modelica and verified the proposed model.

Dynamic Behavior Analysis of the Auto-leveling System for Large Scale Transporter Type Platform Equipment on the Ground Slope (경사지에서 운용 가능한 대형 차량형 플랫폼 장비 자동수평조절장치의 동적 거동)

  • Ha, Taewan;Park, Jungsoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.502-515
    • /
    • 2020
  • To identify the dynamic characteristics of the Auto-leveling system applied to the Tractor-Trailer type Transporter for mounting a large scale precision equipment, Dynamics Modeling & Simulation were performed using general Dynamics Analysis Program - RecurDyn(V9R2). The axial load data, transverse load data and pad trace data of leveling actuators were obtained from M&S. And they were analyzed and compared with each other by parameters, i.e. friction coefficients on the ground, landing ram speed of actuators, and direction & quantity of ground slope. It was observed that ground contact friction coefficients affected to transverse load and pad trace; the landing ram speed of actuators to both amplitude of axial & transverse load, and this phenomena was able to explain from the frequency analysis of the axial load data; the direction of ground slope to driving sequence of landing ram of actuators. But the dynamic behaviors on the two-directional slope were very different from them on the one-directional slope and more complex.

Vibration Analysis of SAR Antenna Reflectors During Satellite Maneuver (위성 기동 시 SAR 안테나 반사판에 발생하는 진동 분석)

  • Kim, Tae-Hyun;Kim, Dae-Yeon;Suh, Jong-Eun;Han, Jae-Hung;Lee, Jae-Eun;Jung, Hwa-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.3
    • /
    • pp.225-231
    • /
    • 2020
  • Recently, there has been an increasing demand for SAR satellite as it can be operated regardless of the weather condition. In general, main reflector of the SAR is formed of multiple deployable panels to increase performance in the constrained payload envelope. By nature, deployable structure lacks structural stiffness and it is vulnerable to external disturbances and excitation. In particular, SAR satellites may have high levels of vibration occurring at the antenna reflecting surface due to higher angular rate requirements. During image capturing it is important to keep high surface accuracy of the reflector for the quality of images. In this research, a performance degradation of deployable SAR antenna due to structural deformation is analyzed. Panels for main reflectors are assumed to be flexible structures and multi-body simulation environment is established. Then, deflection of the panel is calculated while the satellite performs maneuvers. In addition, antenna gain and beam pointing error are analyzed to determine how these deflections affect antenna performance and mission.